Atom Interferometry In A 10 M Fountain PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Atom Interferometry In A 10 M Fountain PDF full book. Access full book title Atom Interferometry In A 10 M Fountain.

Atom Interferometry in a 10 M Fountain

Atom Interferometry in a 10 M Fountain
Author: Alexander Sugarbaker
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Atom Interferometry in a 10 M Fountain Book in PDF, ePub and Kindle

This thesis presents experimental results from the Stanford 10 m atom drop tower. We use atomic physics and laser spectroscopic techniques to test both general relativity and quantum mechanics. By dropping different types of atoms and observing their free-fall accelerations, it will be possible to test the equivalence principle and other general relativistic effects in the lab. By observing coherence after splitting an atom by up to 8.2 cm, we have probed the quantum-to-classical transition with increasingly macroscopic superposition states.


New Techniques for Precision Atom Interferometry and Applications to Fundamental Tests of Gravity and of Quantum Mechanics

New Techniques for Precision Atom Interferometry and Applications to Fundamental Tests of Gravity and of Quantum Mechanics
Author: Tim Kovachy
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:

Download New Techniques for Precision Atom Interferometry and Applications to Fundamental Tests of Gravity and of Quantum Mechanics Book in PDF, ePub and Kindle

Light-pulse atom interferometry--in which quantum mechanical atomic wave packets are split along two paths and later recombined and made to interfere by sequences of optical pulses--is a remarkably sensitive technique for measuring inertial forces, allowing it to be a valuable tool for applications ranging from fundamental tests of gravity to geodesy and inertial navigation. The inertial sensitivity of an atom interferometer is proportional to its enclosed spacetime area--that is, the product of the spatial separation between the two interferometer paths and the interferometer duration. Therefore, new techniques that allow this spacetime area to be increased are essential in order for atom interferometry to reach its full potential. In this thesis, I describe the development of such techniques. We approach the problem of increasing the interferometer spacetime area on two fronts. First, we implement new methods to increase the momentum transferred by the beam splitters of the interferometer. The velocity difference and therefore the spatial separation of the interferometer paths are proportional to this momentum transfer. Conventional atom optics techniques involve beam splitters that transfer two photon momentum recoils (2 hbar k) to the atoms. I will discuss our realization of large momentum transfer (LMT) beam splitters that transfer up to 100 hbar k. Second, we have built a 10 m tall atomic fountain that allows the total interferometer duration to be increased to 2 s. Ultimately, we combined LMT atom optics with long-duration atom interferometry in the 10 m atomic fountain, leading to very large spacetime area atom interferometers. In these very large area atom interferometers, the separation between the two atomic wave packets that respectively travel along the two interferometer paths reaches distances of up to 54 cm. Therefore, in addition to offering greatly increased inertial sensitivity, these interferometers probe the quantum mechanical wavelike nature of matter in a new macroscopic regime. I will discuss the techniques we devised to overcome the many technical challenges associated with such interferometers, which in other apparatus have prevented interference from being maintained for path separations larger than 1 cm. I will also describe initial results from the use of our very large area interferometers to test the equivalence principle with Rb-85 and Rb-87 and our plans for further progress in this direction. Very large area atom interferometry requires high laser power and extremely cold atom sources. We have developed a novel high power, frequency doubled laser source at 780 nm that is suitable for atom optics. Also, we have implemented a sequence of matter wave lenses to prepare and measure atomic ensembles with record-low effective temperatures of 50 pK. In addition to applications in atom interferometry, we expect that such an atom source will be broadly useful for a wide range of experiments.


Atom Interferometry

Atom Interferometry
Author: G.M. Tino
Publisher: IOS Press
Total Pages: 807
Release: 2014-10-16
Genre: Science
ISBN: 161499448X

Download Atom Interferometry Book in PDF, ePub and Kindle

Since atom interferometers were first realized about 20 years ago, atom interferometry has had many applications in basic and applied science, and has been used to measure gravity acceleration, rotations and fundamental physical quantities with unprecedented precision. Future applications range from tests of general relativity to the development of next-generation inertial navigation systems. This book presents the lectures and notes from the Enrico Fermi school "Atom Interferometry", held in Varenna, Italy, in July 2013. The aim of the school was to cover basic experimental and theoretical aspects and to provide an updated review of current activities in the field as well as main achievements, open issues and future prospects. Topics covered include theoretical background and experimental schemes for atom interferometry; ultracold atoms and atom optics; comparison of atom, light, electron and neutron interferometers and their applications; high precision measurements with atom interferometry and their application to tests of fundamental physics, gravitation, inertial measurements and geophysics; measurement of fundamental constants; interferometry with quantum degenerate gases; matter wave interferometry beyond classical limits; large area interferometers; atom interferometry on chips; and interferometry with molecules. The book will be a valuable source of reference for students, newcomers and experts in the field of atom interferometry.


Ultracold Bosonic and Fermionic Gases

Ultracold Bosonic and Fermionic Gases
Author: Kathy Levin
Publisher: Elsevier
Total Pages: 225
Release: 2012-11-15
Genre: Science
ISBN: 0444538623

Download Ultracold Bosonic and Fermionic Gases Book in PDF, ePub and Kindle

The rapidly developing topic of ultracold atoms has many actual and potential applications for condensed-matter science, and the contributions to this book emphasize these connections. Ultracold Bose and Fermi quantum gases are introduced at a level appropriate for first-year graduate students and non-specialists such as more mature general physicists. The reader will find answers to questions like: how are experiments conducted and how are the results interpreted? What are the advantages and limitations of ultracold atoms in studying many-body physics? How do experiments on ultracold atoms facilitate novel scientific opportunities relevant to the condensed-matted community? This volume seeks to be comprehensible rather than comprehensive; it aims at the level of a colloquium, accessible to outside readers, containing only minimal equations and limited references. In large part, it relies on many beautiful experiments from the past fifteen years and their very fruitful interplay with basic theoretical ideas. In this particular context, phenomena most relevant to condensed-matter science have been emphasized. Introduces ultracold Bose and Fermi quantum gases at a level appropriate for non-specialists Discusses landmark experiments and their fruitful interplay with basic theoretical ideas Comprehensible rather than comprehensive, containing only minimal equations


Current Trends in Atomic Physics

Current Trends in Atomic Physics
Author: Antoine Browaeys
Publisher: Oxford University Press
Total Pages: 464
Release: 2019-05-16
Genre: Science
ISBN: 0192574094

Download Current Trends in Atomic Physics Book in PDF, ePub and Kindle

This book gathers the lecture notes of courses given at Session CVII of the summer school in physics, entitled “Current Trends in Atomic Physics” and held in July, 2016 in Les Houches, France. Atomic physics provides a paradigm for exploring few-body quantum systems with unparalleled control. In recent years, this ability has been applied in diverse areas including condensed matter physics, high energy physics, chemistry and ultra-fast phenomena as well as foundational aspects of quantum physics. This book addresses these topics by presenting developments and current trends via a series of tutorials and lectures presented by international leading investigators.


Exploring the World with the Laser

Exploring the World with the Laser
Author: Dieter Meschede
Publisher: Springer
Total Pages: 799
Release: 2018-01-02
Genre: Science
ISBN: 3319643460

Download Exploring the World with the Laser Book in PDF, ePub and Kindle

This edition contains carefully selected contributions by leading scientists in high-resolution laser spectroscopy, quantum optics and laser physics. Emphasis is given to ultrafast laser phenomena, implementations of frequency combs, precision spectroscopy and high resolution metrology. Furthermore, applications of the fundamentals of quantum mechanics are widely covered. This book is dedicated to Nobel prize winner Theodor W. Hänsch on the occasion of his 75th birthday. The contributions are reprinted from a topical collection published in Applied Physics B, 2016. Selected contributions are available open access under a CC BY 4.0 license via link.springer.com. Please see the copyright page for further details.


Long Baseline Atom Interferometry

Long Baseline Atom Interferometry
Author: David Marvin Slaughter Johnson
Publisher: Stanford University
Total Pages: 152
Release: 2011
Genre:
ISBN:

Download Long Baseline Atom Interferometry Book in PDF, ePub and Kindle

Due to its impressive sensitivity, long baseline atom interferometry is an exciting tool for tests of fundamental physics. We are currently constructing a 10-meter scale apparatus to test the Weak Equivalence Principle (WEP) using co-located Rb85 and Rb87 atom interferometers. This apparatus aims to improve the current limit on WEP violation 100-fold, which illustrates the power of this technique. This scientific goal sets stringent requirements on the kinematic preparation of the atomic test masses, the interferometer laser wavefront and stability, as well as the electromagnetic and gravitational field homogeneity of the interferometer region. The efforts to control these sources of systematic error are discussed. Additionally, applications of long baseline atom interferometry to space-based sensors for geodesy and gravitational wave detection are presented.


Advances in the Interplay Between Quantum and Gravity Physics

Advances in the Interplay Between Quantum and Gravity Physics
Author: Peter G. Bergmann
Publisher: Springer Science & Business Media
Total Pages: 568
Release: 2002-04-30
Genre: Science
ISBN: 9781402005930

Download Advances in the Interplay Between Quantum and Gravity Physics Book in PDF, ePub and Kindle

In this XVII Course of the International School of Cosmology and Gravitation devoted to "ADVANCES IN THE INTERPLAY BETWEEN QUANTUM AND GRAVITY PHYSICS" we have considered different aspects of the influence of gravity on quantum systems. In order to achieve this aim, in many lectures, seminars and discussions we have strengthened the interplay between gravity and quantum systems starting from the situation in the early universe based on astrophysical observations, up to the earthly based experiments with atom interferometry for probing the structure of space-time. Thus we have had timely lectures on the quantum field and horizon of a black hole including reviews of the problem of black holes thermodynamics and entropy, quantum information, quantum black holes, quantum evaporation and Hawking radiation, recent advances in stockastic gravity. We have also discussed quantum fluctuations in inflationary universe, quantum effects and reheating after inflation, and superplanckian energies in Hawking radiation. In this regard the subject of spinors in purely affine space-time and Dirac matter according to Weyl in the generalized theory of gravitation were developed . The dualism between space-time and matter has been deeply analyzed in order to see why, for general relativity, this is an obstacle for quantization of the theory. Also canonical Gravity and Mach's principle, torsion and curvature as commutator for Quantum Gravity and Dirac Geometry of real space-time were analysed, together with the problem of 5-Dimensional Projective Unified Field theory and Multidimensional Gravity and Cosmology.


Handbook of Gravitational Wave Astronomy

Handbook of Gravitational Wave Astronomy
Author: Cosimo Bambi
Publisher: Springer Nature
Total Pages: 1895
Release: 2022-07-02
Genre: Science
ISBN: 9811643067

Download Handbook of Gravitational Wave Astronomy Book in PDF, ePub and Kindle

This handbook provides an updated comprehensive description of gravitational wave astronomy. In the first part, it reviews gravitational wave experiments, from ground and space based laser interferometers to pulsar timing arrays and indirect detection from the cosmic microwave background. In the second part, it discusses a number of astrophysical and cosmological gravitational wave sources, including black holes, neutron stars, possible more exotic objects, and sources in the early Universe. The third part of the book reviews the methods to calculate gravitational waveforms. The fourth and last part of the book covers techniques employed in gravitational wave astronomy data analysis. This book represents both a valuable resource for graduate students and an important reference for researchers in gravitational wave astronomy.


Cpt And Lorentz Symmetry - Proceedings Of The Ninth Meeting

Cpt And Lorentz Symmetry - Proceedings Of The Ninth Meeting
Author: Ralf Lehnert
Publisher: World Scientific
Total Pages: 283
Release: 2023-04-25
Genre: Science
ISBN: 9811275394

Download Cpt And Lorentz Symmetry - Proceedings Of The Ninth Meeting Book in PDF, ePub and Kindle

This book contains the Proceedings of the Ninth Meeting on CPT and Lorentz Symmetry, held at Indiana University in Bloomington May 17-26, 2022. The Meeting focused on tests of these fundamental symmetries and on related theoretical issues, including scenarios for possible violations. Experimental topics covered at the meeting include astrophysical observations of neutrinos, photons, cosmic rays, pulsars, and gravitational waves; investigations at accelerators and storage rings involving neutral mesons, muons, quarks, and flavor-changing processes; gravity tests in the laboratory and in the solar system; spectroscopic studies of ions, atoms, molecules, and exotic atoms; measurements involving spin motion; comparative tests between matter and antimatter; lasers and masers; measurements involving neutrons; investigations with cavities, oscillators, and resonators; neutrino oscillations, propagation, and endpoint measurements.Theoretical and phenomenological topics discussed involved the identification of signatures for CPT and Lorentz violation in particle physics, electromagnetism, and gravity; mechanisms and toy models for spacetime-symmetry breakdown; studies in field theory, gravitation, and particle physics; and condensed-matter applications.