Artificial Gauge Fields With Ultracold Atoms In Optical Lattices PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Artificial Gauge Fields With Ultracold Atoms In Optical Lattices PDF full book. Access full book title Artificial Gauge Fields With Ultracold Atoms In Optical Lattices.

Artificial Gauge Fields with Ultracold Atoms in Optical Lattices

Artificial Gauge Fields with Ultracold Atoms in Optical Lattices
Author: Monika Aidelsburger
Publisher: Springer
Total Pages: 180
Release: 2015-12-14
Genre: Science
ISBN: 331925829X

Download Artificial Gauge Fields with Ultracold Atoms in Optical Lattices Book in PDF, ePub and Kindle

This work reports on the generation of artificial magnetic fields with ultracold atoms in optical lattices using laser-assisted tunneling, as well as on the first Chern-number measurement in a non-electronic system. It starts with an introduction to the Hofstadter model, which describes the dynamics of charged particles on a square lattice subjected to strong magnetic fields. This model exhibits energy bands with non-zero topological invariants called Chern numbers, a property that is at the origin of the quantum Hall effect. The main part of the work discusses the realization of analog systems with ultracold neutral atoms using laser-assisted-tunneling techniques both from a theoretical and experimental point of view. Staggered, homogeneous and spin-dependent flux distributions are generated and characterized using two-dimensional optical super-lattice potentials. Additionally their topological properties are studied via the observation of bulk topological currents. The experimental techniques presented here offer a unique setting for studying topologically non-trivial systems with ultracold atoms.


Ultracold Atoms in Optical Lattices

Ultracold Atoms in Optical Lattices
Author: Maciej Lewenstein
Publisher: OUP Oxford
Total Pages: 494
Release: 2012-03-08
Genre: Science
ISBN: 0191627437

Download Ultracold Atoms in Optical Lattices Book in PDF, ePub and Kindle

Quantum computers, though not yet available on the market, will revolutionize the future of information processing. Quantum computers for special purposes like quantum simulators are already within reach. The physics of ultracold atoms, ions and molecules offer unprecedented possibilities of control of quantum many body systems and novel possibilities of applications to quantum information processing and quantum metrology. Particularly fascinating is the possibility of using ultracold atoms in lattices to simulate condensed matter or even high energy physics. This book provides a complete and comprehensive overview of ultracold lattice gases as quantum simulators. It opens up an interdisciplinary field involving atomic, molecular and optical physics, quantum optics, quantum information, condensed matter and high energy physics. The book includes some introductory chapters on basic concepts and methods, and then focuses on the physics of spinor, dipolar, disordered, and frustrated lattice gases. It reviews in detail the physics of artificial lattice gauge fields with ultracold gases. The last part of the book covers simulators of quantum computers. After a brief course in quantum information theory, the implementations of quantum computation with ultracold gases are discussed, as well as our current understanding of condensed matter from a quantum information perspective.


Probing an Ytterbium Bose-Einstein Condensate Using an Ultranarrow Optical Line

Probing an Ytterbium Bose-Einstein Condensate Using an Ultranarrow Optical Line
Author: Matthias Scholl
Publisher:
Total Pages: 0
Release: 2014
Genre:
ISBN:

Download Probing an Ytterbium Bose-Einstein Condensate Using an Ultranarrow Optical Line Book in PDF, ePub and Kindle

In this work I present the development of a new experiment to produce quantum degenerate gases of ytterbium. This project aims at realizing artificial gauge fields with ultracold atoms in optical lattices. Combining intense gauge fields with strong on-site interactions is expected to open a new area for ultracold quantum gases, where for instance the atomic analogs of fractional quantum Hall systems could be realized.First I describe the experimental methods for the production of a Bose-Einstein condensate (BEC) of 174Yb. This implies magneto-optical trapping on the 1S0-3P1 intercombination transition and a transport of the atomic cloud in an optical dipole trap over a distance of 22 cm. Evaporative cooling in a crossed dipole trap results in the production of pure BECs of about 6x10^4 atoms.The planned implementation of artificial gauge fields requires the coherent driving of the 1S0-3P0 clock transition of ytterbium. For this purpose an ultrastable laser system at 578 nm, frequency locked to an ultralow expansion (ULE) cavity, has been realized. A precise determination of the temperature zero-crossing point of the ULE cavity allowed us to limit laser frequency drifts below 100 mHz/s. Spectroscopic measurements of the clock transition on a trapped and free falling BEC are presented, where typical linewidths in the kHz range are observed, limited by interatomic interactions. Finally I present a detailed discussion of the methods to achieve artificial gauge fields in optical lattices and their possible experimental implementation. This includes a scheme to realize a bichromatic state-dependent optical superlattice in a doubly-resonant cavity.


Quantum Matter at Ultralow Temperatures

Quantum Matter at Ultralow Temperatures
Author: M. Inguscio
Publisher: IOS Press
Total Pages: 590
Release: 2016-09-27
Genre: Science
ISBN: 1614996946

Download Quantum Matter at Ultralow Temperatures Book in PDF, ePub and Kindle

The Enrico Fermi summer school on Quantum Matter at Ultralow Temperatures held on 7-15 July 2014 at Varenna, Italy, featured important frontiers in the field of ultracold atoms. For the last 25 years, this field has undergone dramatic developments, which were chronicled by several Varenna summer schools, in 1991 on Laser Manipulation of Atoms, in 1998 on Bose-Einstein Condensation in Atomic Gases, and in 2006 on Ultra-cold Fermi Gases. The theme of the 2014 school demonstrates that the field has now branched out into many different directions, where the tools and precision of atomic physics are used to realise new quantum systems, or in other words, to quantum-engineer interesting Hamiltonians. The topics of the school identify major new directions: Quantum gases with long range interactions, either due to strong magnetic dipole forces, due to Rydberg excitations, or, for polar molecules, due to electric dipole interactions; quantum gases in lower dimensions; quantum gases with disorder; atoms in optical lattices, now with single-site optical resolution; systems with non-trivial topological properties, e.g. with spin-orbit coupling or in artificial gauge fields; quantum impurity problems (Bose and Fermi polarons); quantum magnetism. Fermi gases with strong interactions, spinor Bose-Einstein condensates and coupled multi-component Bose gases or Bose-Fermi mixtures continue to be active areas. The current status of several of these areas is systematically summarized in this volume.


Manipulating Quantum Systems

Manipulating Quantum Systems
Author: National Academies of Sciences, Engineering, and Medicine
Publisher: National Academies Press
Total Pages: 315
Release: 2020-09-14
Genre: Science
ISBN: 0309499542

Download Manipulating Quantum Systems Book in PDF, ePub and Kindle

The field of atomic, molecular, and optical (AMO) science underpins many technologies and continues to progress at an exciting pace for both scientific discoveries and technological innovations. AMO physics studies the fundamental building blocks of functioning matter to help advance the understanding of the universe. It is a foundational discipline within the physical sciences, relating to atoms and their constituents, to molecules, and to light at the quantum level. AMO physics combines fundamental research with practical application, coupling fundamental scientific discovery to rapidly evolving technological advances, innovation and commercialization. Due to the wide-reaching intellectual, societal, and economical impact of AMO, it is important to review recent advances and future opportunities in AMO physics. Manipulating Quantum Systems: An Assessment of Atomic, Molecular, and Optical Physics in the United States assesses opportunities in AMO science and technology over the coming decade. Key topics in this report include tools made of light; emerging phenomena from few- to many-body systems; the foundations of quantum information science and technologies; quantum dynamics in the time and frequency domains; precision and the nature of the universe, and the broader impact of AMO science.


Topological Insulators and Topological Superconductors

Topological Insulators and Topological Superconductors
Author: B. Andrei Bernevig
Publisher: Princeton University Press
Total Pages: 264
Release: 2013-04-07
Genre: Science
ISBN: 1400846730

Download Topological Insulators and Topological Superconductors Book in PDF, ePub and Kindle

This graduate-level textbook is the first pedagogical synthesis of the field of topological insulators and superconductors, one of the most exciting areas of research in condensed matter physics. Presenting the latest developments, while providing all the calculations necessary for a self-contained and complete description of the discipline, it is ideal for graduate students and researchers preparing to work in this area, and it will be an essential reference both within and outside the classroom. The book begins with simple concepts such as Berry phases, Dirac fermions, Hall conductance and its link to topology, and the Hofstadter problem of lattice electrons in a magnetic field. It moves on to explain topological phases of matter such as Chern insulators, two- and three-dimensional topological insulators, and Majorana p-wave wires. Additionally, the book covers zero modes on vortices in topological superconductors, time-reversal topological superconductors, and topological responses/field theory and topological indices. The book also analyzes recent topics in condensed matter theory and concludes by surveying active subfields of research such as insulators with point-group symmetries and the stability of topological semimetals. Problems at the end of each chapter offer opportunities to test knowledge and engage with frontier research issues. Topological Insulators and Topological Superconductors will provide graduate students and researchers with the physical understanding and mathematical tools needed to embark on research in this rapidly evolving field.


Photonics, Volume 2

Photonics, Volume 2
Author: David L. Andrews
Publisher: John Wiley & Sons
Total Pages: 456
Release: 2015-01-28
Genre: Technology & Engineering
ISBN: 1119011744

Download Photonics, Volume 2 Book in PDF, ePub and Kindle

Discusses the basic physical principles underlying the science and technology of nanophotonics, its materials and structures This volume presents nanophotonic structures and Materials. Nanophotonics is photonic science and technology that utilizes light/matter interactions on the nanoscale where researchers are discovering new phenomena and developing techniques that go well beyond what is possible with conventional photonics and electronics.The topics discussed in this volume are: Cavity Photonics; Cold Atoms and Bose-Einstein Condensates; Displays; E-paper; Graphene; Integrated Photonics; Liquid Crystals; Metamaterials; Micro-and Nanostructure Fabrication; Nanomaterials; Nanotubes; Plasmonics; Quantum Dots; Spintronics; Thin Film Optics Comprehensive and accessible coverage of the whole of modern photonics Emphasizes processes and applications that specifically exploit photon attributes of light Deals with the rapidly advancing area of modern optics Chapters are written by top scientists in their field Written for the graduate level student in physical sciences; Industrial and academic researchers in photonics, graduate students in the area; College lecturers, educators, policymakers, consultants, Scientific and technical libraries, government laboratories, NIH.


Condensed Matter Field Theory

Condensed Matter Field Theory
Author: Alexander Altland
Publisher: Cambridge University Press
Total Pages: 785
Release: 2010-03-11
Genre: Science
ISBN: 0521769752

Download Condensed Matter Field Theory Book in PDF, ePub and Kindle

This primer is aimed at elevating graduate students of condensed matter theory to a level where they can engage in independent research. Topics covered include second quantisation, path and functional field integration, mean-field theory and collective phenomena.


Synthetic Spin-orbit Coupling In Cold Atoms

Synthetic Spin-orbit Coupling In Cold Atoms
Author: Wei Zhang
Publisher: World Scientific
Total Pages: 308
Release: 2018-07-25
Genre: Science
ISBN: 9813272546

Download Synthetic Spin-orbit Coupling In Cold Atoms Book in PDF, ePub and Kindle

This is a review volume covering a wide range of topics in this newly developed research field. The intended audience corresponds to graduate students, post-docs and colleagues working in the field of cold atomic gases. This is the first review volume dedicated to this active research frontier, and provides a comprehensive and pedagogical summary of recent progresses in the field.


Universal Themes of Bose-Einstein Condensation

Universal Themes of Bose-Einstein Condensation
Author: Nick P. Proukakis
Publisher: Cambridge University Press
Total Pages: 663
Release: 2017-04-27
Genre: Science
ISBN: 1107085691

Download Universal Themes of Bose-Einstein Condensation Book in PDF, ePub and Kindle

Covering general theoretical concepts and the research to date, this book demonstrates that Bose-Einstein condensation is a truly universal phenomenon.