Arsenic Removal For Drinking Water In Developing Countries Through The Use Of Granular Ferric Hydroxide Media PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Arsenic Removal For Drinking Water In Developing Countries Through The Use Of Granular Ferric Hydroxide Media PDF full book. Access full book title Arsenic Removal For Drinking Water In Developing Countries Through The Use Of Granular Ferric Hydroxide Media.

Review of Arsenic Removal Technologies for Contaminated Groundwaters

Review of Arsenic Removal Technologies for Contaminated Groundwaters
Author:
Publisher:
Total Pages: 43
Release: 2003
Genre:
ISBN:

Download Review of Arsenic Removal Technologies for Contaminated Groundwaters Book in PDF, ePub and Kindle

This review was compiled to summarize the technologies currently being investigated to remove arsenic from drinking waters, with a special focus on developing and third-world countries where the problem is exacerbated by flooding and depressed economic conditions. The reason for compiling this report is to provide background material and a description of competing technologies currently described in the literature for arsenic removal. Based on the sophistication and applicability of current technologies, Argonne National Laboratory may develop an improved method based on magnetic particle technology. Magnetic particle sorbents may afford improved reaction rates, facilitate particle-water separation, and offer reusability. Developing countries like Vietnam and Bangladesh cannot afford expensive, large-scale treatments to remove arsenic from drinking waters to acceptable limits (from 50 ppb to 10 ppb, depending on the country). Low-cost, effective technologies that can be readily available at the household or community level are needed to solve the present crisis. Appropriate technologies should meet certain criteria, including the following: The treatment must be applicable over a wide range of arsenic concentrations; It should be easy to use without running water or electricity; and The materials for the treatment should be cheap and readily available, and/or suitable for reuse. Our review of arsenic removal technologies and procedures indicates that iron filings, ferric salts, granular ferric hydroxide, alumina manganese oxide, Aqua-bind., and Kimberlite tailings are potentially low-cost sorbents that can remove arsenic after simple mixing in a relatively short time. However, all these technologies suffer from significant shortcomings. Ferric salts are cheap and very effective at removing arsenic but the reaction rates are slow. Fixed-bed columns make use of activated alumina and iron-coated sands but do not work well with groundwater having high concentrations of iron because iron precipitates in the presence of air, which could clog and foul the column. Synthetic sorbents are highly selective and effective and do not pose a significant waste disposal concern because they are generally non-hazardous. Aqua-bind. is perhaps the most effective synthetic sorbent available for removing arsenic, but it must be mass-produced to realize low cost. Naturally occurring solids are cheap and remove arsenic well; however, the removal rate is often very slow and the solids can harbor bacteria. This report reviews competing technologies for removal of water-borne arsenic to establish a baseline for technology improvements. Specifically, the information in this report will serve as a basis for developing a low-cost separation technology using functionalized magnetic particles to adsorb arsenic and permanent magnets to separate the arsenic-loaded magnetic particles from the cleaned water.


Drinking Water Treatment for Developing Countries

Drinking Water Treatment for Developing Countries
Author: Aniruddha Bhalchandra Pandit
Publisher: Royal Society of Chemistry
Total Pages: 228
Release: 2019-03-06
Genre: Technology & Engineering
ISBN: 1788017625

Download Drinking Water Treatment for Developing Countries Book in PDF, ePub and Kindle

Drinking water availability and safety is a major challenge faced globally and is highly pronounced in developing countries worldwide. Lack of safe potable water across the globe can be attributed to industrial pollution, climate change and other human activities that result in a spectrum of chemical, physical and biological pollutants entering a water body. Although efforts to solve this problem are well underway worldwide, challenges still exist. This book shines a light on drinking water treatment methods and scale of operation specifically for the developing countries. Covering both conventional and emerging treatment technologies, the authors discuss the removal of chemical, physical and biological pollutants from drinking water, with a focus on developing countries. Conservation by rainwater harvesting, wastewater reuse, and selection criteria of feasible methods are considered in the context of issues relevant to Africa, Asia, Latin America and the Caribbean. With case studies connecting theory to real world matters, showcasing efficiencies and drawbacks, this book is ideal for graduate and postgraduate level course use in engineering departments or for self-study and research.


Arsenic Water Technology Partnership Final Technical Report

Arsenic Water Technology Partnership Final Technical Report
Author:
Publisher:
Total Pages: 371
Release: 2010
Genre:
ISBN:

Download Arsenic Water Technology Partnership Final Technical Report Book in PDF, ePub and Kindle

Congress created the Arsenic Water Technology Partnership (AWTP) in 2002 to develop and provide solutions for the cost-effective removal of arsenic from drinking water. The AWTP was funded by four congressional appropriations (FY03-FY06) to evaluate and develop new technologies that could significantly reduce compliance costs associated with the new 0.010 mg/L maximum contaminant level (MCL) for arsenic in drinking water. Initially focused on arsenic research, in FY06 the AWTP was expanded to include desalination research upon recognition that the research challenges were similar. The funding for the research and subsequent transfer of technology was made available by Congress through the Department of Energy (DOE). The AWTP was a collaborative effort between DOE's Sandia National Laboratories (Sandia), Water Research Foundation (WaterRF, formerly Awwa Research Foundation) and WERC: A Consortium for Environmental Education and Technology Development based at New Mexico State University (WERC). Key features of the AWTP included technology development, technology implementation/testing and technology transfer. Each of the partners evaluated and oversaw development of new arsenic and desalination treatment technologies, and the technology transfer program ensured that successful technologies were transferred to the water supply community. Through the use of an arsenic treatment cost model, training sessions and a web site, information on arsenic removal and desalination technologies was transferred to stakeholders. KEY ACCOMPLISHMENTS The AWTP partnership funded research on, and deployment and testing of, innovative arsenic and desalination removal technologies; education for small and large water system operators; and development of a comprehensive web-based tool for arsenic treatment technology selection using site-specific data. As water becomes scarcer, and potable water supplies become increasingly vulnerable to contamination, the development of affordable water treatment systems is critical. Choosing the best available treatment system can be difficult. The AWTP has developed and evaluated improved arsenic and desalination treatment systems and provided that information to water utilities and stakeholders. Key technology advancements achieved by the partnership include: ARSENIC Development and full-scale implementation (San Antonio, NM) of an in-situ treatment process that is producing drinking water without the generation of any residuals that require disposal. The way is now paved for in-situ treatment to be used throughout the U.S. Detailed information on how to evaluate and prevent unintended consequences of bringing an arsenic treatment technology online prior to implementation, including: -potential for increased distribution system corrosion -potential for treatment systems to release arsenic into drinking water due to unintended pH variation Methods and options on the most appropriate ways to classify, stabilize and dispose of potentially hazardous arsenic-containing water treatment residuals A much improved understanding of water quality characteristics that impact specific treatment technologies allowing for site-specific selection of a best-available-technology Demonstrated at pilot scale that use of ultra-light filter media in a coagulation-filtration process can significantly reduce required backwash water volume and achieve 99 percent feedwater recovery while effectively removing arsenic Development of a polymeric ligand exchanger that selectively and effectively removes the oxidized form of arsenic under typical groundwater conditions, which is best utilized for treating water with high sulfate and relatively low alkalinity Development of iron-granular activated carbon (GAC) and titanium-GAC composite adsorbents for arsenic removal, which can simultaneously remove contaminants that adsorb onto activated carbon, e.g., neutral organic chemicals, radionuclides, and taste-and-odor compounds DESALINATION Development of a comprehensive and detailed set of guidelines for utilities wanting to evaluate and bring a desalination treatment process online Improved understanding of membrane fouling in seawater desalination, and evaluation of a pretreatment method to minimize fouling Improved understanding of mechanisms underlying VSEP, a membrane-based inland brackish desalination process that may enhance recovery by up to 25% Demonstrated a hybrid reverse osmosis-forward osmosis process which can enhance seawater desalination through dilution with treated wastewater.


Environmental Arsenic in a Changing World

Environmental Arsenic in a Changing World
Author: Yongguan Zhu
Publisher: CRC Press
Total Pages: 715
Release: 2019-08-23
Genre: Technology & Engineering
ISBN: 1351046616

Download Environmental Arsenic in a Changing World Book in PDF, ePub and Kindle

The Congress "Arsenic in the Environment" offers an international, multi- and interdisciplinary discussion platform for research and innovation aimed towards a holistic solution to the problem posed by the environmental toxin arsenic, with significant societal impact. The Congress has focused on cutting edge and breakthrough research in physical, chemical, toxicological, medical, agricultural and other specific issues on arsenic across a broader environmental realm. The Biennial Congress "Arsenic in the Environment" was first organized in Mexico City (As2006) followed by As2008 in Valencia (Spain), As2010 in Tainan (Chinese Taiwan), As2012 in Cairns (Australia), As2014 in Buenos Aires (Argentina) and As2016 in Stockholm (Sweden). The 7th International Congress As2018 was held July 1-6, 2018, in Beijing, P. R. China and was entitled Environmental Arsenic in a Changing World. The Congress addressed the broader context of arsenic research aligned on the following themes: Theme 1: Arsenic Behaviour in Changing Environmental Media Theme 2: Arsenic in a Changing Agricultural Ecosystem Theme 3: Health Impacts of Environmental Arsenic Theme 4: Technologies for Arsenic Immobilization and Clean Water Blueprints Theme 5: Sustainable Mitigation and Management Arsenic in drinking water (mainly groundwater) has emerged as an issue of global health concern. During last decade, the presence of arsenic in rice, possibly also other food of plant origins, has attained increasing attention. This is particularly true in the Asian countries, where the use of high arsenic groundwater as source of irrigation water and drinking water has been flagged as severe health concern. This has been accentuated by elevating arsenic concentrations in deep groundwater recharged from shallow high arsenic groundwater, which may have further detrimental effects on public health. Notably, China has been in the forefront of research on arsenic biogeochemical cycling, health effects of arsenic, technologies for arsenic removal, and sustainable mitigation measures. The Congress has attracted professionals involved in different segments of interdisciplinary research on arsenic in an open forum, and strengthened relations between academia, research institutions, government and non-governmental agencies, industries, and civil society organizations to share an optimal ambience for exchange of knowledge.