Approaches To Probabilistic Model Learning For Mobile Manipulation Robots PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Approaches To Probabilistic Model Learning For Mobile Manipulation Robots PDF full book. Access full book title Approaches To Probabilistic Model Learning For Mobile Manipulation Robots.

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots

Approaches to Probabilistic Model Learning for Mobile Manipulation Robots
Author: Jürgen Sturm
Publisher: Springer
Total Pages: 216
Release: 2013-12-12
Genre: Technology & Engineering
ISBN: 3642371604

Download Approaches to Probabilistic Model Learning for Mobile Manipulation Robots Book in PDF, ePub and Kindle

This book presents techniques that enable mobile manipulation robots to autonomously adapt to new situations. Covers kinematic modeling and learning; self-calibration; tactile sensing and object recognition; imitation learning and programming by demonstration.


Probabilistic Robotics

Probabilistic Robotics
Author: Sebastian Thrun
Publisher: MIT Press
Total Pages: 668
Release: 2005-08-19
Genre: Technology & Engineering
ISBN: 0262201623

Download Probabilistic Robotics Book in PDF, ePub and Kindle

An introduction to the techniques and algorithms of the newest field in robotics. Probabilistic robotics is a new and growing area in robotics, concerned with perception and control in the face of uncertainty. Building on the field of mathematical statistics, probabilistic robotics endows robots with a new level of robustness in real-world situations. This book introduces the reader to a wealth of techniques and algorithms in the field. All algorithms are based on a single overarching mathematical foundation. Each chapter provides example implementations in pseudo code, detailed mathematical derivations, discussions from a practitioner's perspective, and extensive lists of exercises and class projects. The book's Web site, www.probabilistic-robotics.org, has additional material. The book is relevant for anyone involved in robotic software development and scientific research. It will also be of interest to applied statisticians and engineers dealing with real-world sensor data.


Learning for Adaptive and Reactive Robot Control

Learning for Adaptive and Reactive Robot Control
Author: Aude Billard
Publisher: MIT Press
Total Pages: 425
Release: 2022-02-08
Genre: Technology & Engineering
ISBN: 0262367017

Download Learning for Adaptive and Reactive Robot Control Book in PDF, ePub and Kindle

Methods by which robots can learn control laws that enable real-time reactivity using dynamical systems; with applications and exercises. This book presents a wealth of machine learning techniques to make the control of robots more flexible and safe when interacting with humans. It introduces a set of control laws that enable reactivity using dynamical systems, a widely used method for solving motion-planning problems in robotics. These control approaches can replan in milliseconds to adapt to new environmental constraints and offer safe and compliant control of forces in contact. The techniques offer theoretical advantages, including convergence to a goal, non-penetration of obstacles, and passivity. The coverage of learning begins with low-level control parameters and progresses to higher-level competencies composed of combinations of skills. Learning for Adaptive and Reactive Robot Control is designed for graduate-level courses in robotics, with chapters that proceed from fundamentals to more advanced content. Techniques covered include learning from demonstration, optimization, and reinforcement learning, and using dynamical systems in learning control laws, trajectory planning, and methods for compliant and force control . Features for teaching in each chapter: applications, which range from arm manipulators to whole-body control of humanoid robots; pencil-and-paper and programming exercises; lecture videos, slides, and MATLAB code examples available on the author’s website . an eTextbook platform website offering protected material[EPS2] for instructors including solutions.


State-aggregation Algorithms for Learning Probabilistic Models for Robot Control

State-aggregation Algorithms for Learning Probabilistic Models for Robot Control
Author: Daniel Nikovski
Publisher:
Total Pages: 164
Release: 2002
Genre: Markov processes
ISBN:

Download State-aggregation Algorithms for Learning Probabilistic Models for Robot Control Book in PDF, ePub and Kindle

Abstract: "This thesis addresses the problem of learning probabilistic representations of dynamical systems with non-linear dynamics and hidden state in the form of partially observable Markov decision process (POMDP) models, with the explicit purpose of using these models for robot control. In contrast to the usual approach to learning probabilistic models, which is based on iterative adjustment of probabilities so as to improve the likelihood of the observed data, the algorithms proposed in this thesis take a different approach -- they reduce the learning problem to that of state aggregation by clustering in an embedding space of delayed coordinates, and subsequently estimating transition probabilities between aggregated states (clusters). This approach has close ties to the dominant methods for system identification in the field of control engineering, although the characteristics of POMDP models require very different algorithmic solutions. Apart from an extensive investigation of the performance of the proposed algorithms in simulation, they are also applied to two robots built in the course of our experiments. The first one is a differential-drive mobile robot with a minimal number of proximity sensors, which has to perform the well-known robotic task of self-localization along the perimeter of its workspace. In comparison to previous neural-net based approaches to the same problem, our algorithm achieved much higher spatial accuracy of localization. The other task is visual servo-control of an under-actuated arm which has to rotate a flying ball attached to it so as to maintain maximal height of rotation with minimal energy expenditure. Even though this problem is intractable for known control engineering methods due to its strongly non-linear dynamics and partially observable state, a control policy obtained by means of policy iteration on a POMDP model learned by our state-aggregation algorithm performed better than several alternative open-loop and closed-loop controllers."


Visual Attributes

Visual Attributes
Author: Rogerio Schmidt Feris
Publisher: Springer
Total Pages: 364
Release: 2017-03-21
Genre: Computers
ISBN: 3319500775

Download Visual Attributes Book in PDF, ePub and Kindle

This unique text/reference provides a detailed overview of the latest advances in machine learning and computer vision related to visual attributes, highlighting how this emerging field intersects with other disciplines, such as computational linguistics and human-machine interaction. Topics and features: presents attribute-based methods for zero-shot classification, learning using privileged information, and methods for multi-task attribute learning; describes the concept of relative attributes, and examines the effectiveness of modeling relative attributes in image search applications; reviews state-of-the-art methods for estimation of human attributes, and describes their use in a range of different applications; discusses attempts to build a vocabulary of visual attributes; explores the connections between visual attributes and natural language; provides contributions from an international selection of world-renowned scientists, covering both theoretical aspects and practical applications.


Towards Service Robots for Everyday Environments

Towards Service Robots for Everyday Environments
Author: Erwin Prassler
Publisher: Springer Science & Business Media
Total Pages: 521
Release: 2012-03-14
Genre: Technology & Engineering
ISBN: 3642251153

Download Towards Service Robots for Everyday Environments Book in PDF, ePub and Kindle

People have dreamed of machines, which would free them from unpleasant, dull, dirty and dangerous tasks and work for them as servants, for centuries if not millennia. Service robots seem to finally let these dreams come true. But where are all these robots that eventually serve us all day long, day for day? A few service robots have entered the market: domestic and professional cleaning robots, lawnmowers, milking robots, or entertainment robots. Some of these robots look more like toys or gadgets rather than real robots. But where is the rest? This is a question, which is asked not only by customers, but also by service providers, care organizations, politicians, and funding agencies. The answer is not very satisfying. Today’s service robots have their problems operating in everyday environments. This is by far more challenging than operating an industrial robot behind a fence. There is a comprehensive list of technical and scientific problems, which still need to be solved. To advance the state of the art in service robotics towards robots, which are capable of operating in an everyday environment, was the major objective of the DESIRE project (Deutsche Service Robotik Initiative – Germany Service Robotics Initiative) funded by the German Ministry of Education and Research (BMBF) under grant no. 01IME01A. This book offers a sample of the results achieved in DESIRE.


Toward Learning Robots

Toward Learning Robots
Author: Walter Van de Velde
Publisher: MIT Press
Total Pages: 182
Release: 1993
Genre: Computers
ISBN: 9780262720175

Download Toward Learning Robots Book in PDF, ePub and Kindle

The contributions in Toward Learning Robots address the question of how a robot can be designed to acquire autonomously whatever it needs to realize adequate behavior in a complex environment. In-depth discussions of issues, techniques, and experiments in machine learning focus on improving ease of programming and enhancing robustness in unpredictable and changing environments, given limitations of time and resources available to researchers. The authors show practical progress toward a useful set of abstractions and techniques to describe and automate various aspects of learning in autonomous systems. The close interaction of such a system with the world reveals opportunities for new architectures and learning scenarios and for grounding symbolic representations, though such thorny problems as noise, choice of language, abstraction level of representation, and operationality have to be faced head-on. Contents Introduction: Toward Learning Robots * Learning Reliable Manipulation Strategies without Initial Physical Models * Learning by an Autonomous Agent in the Pushing Domain * A Cost-Sensitive Machine Learning Method for the Approach and Recognize Task * A Robot Exploration and Mapping Strategy Based on a Semantic Hierarchy of Spatial Representations * Understanding Object Motion: Recognition, Learning and Spatiotemporal Reasoning * Learning How to Plan * Robo-Soar: An Integration of External Interaction, Planning, and Learning Using Soar * Foundations of Learning in Autonomous Agents * Prior Knowledge and Autonomous Learning


Learning Mobile Manipulation Actions from Human Demonstrations: an Approach to Learning and Augmenting Action Models and Their Integration Into Task Representations

Learning Mobile Manipulation Actions from Human Demonstrations: an Approach to Learning and Augmenting Action Models and Their Integration Into Task Representations
Author: Tim Welschehold
Publisher:
Total Pages:
Release: 2020
Genre:
ISBN:

Download Learning Mobile Manipulation Actions from Human Demonstrations: an Approach to Learning and Augmenting Action Models and Their Integration Into Task Representations Book in PDF, ePub and Kindle

Abstract: While incredible advancements in robotics have been achieved over the last decade, direct physical interaction with an initially unknown and dynamic environment is still a challenging problem. In order to use robots as service assistants and take over household chores in the user's home environment, they must be able to perform goal directed manipulation tasks autonomously and further, learn these task intuitively from their owners. Consider for instance the task of setting a breakfast table: Although it is a relatively simple task for a human being, it poses some serious challenges to the robot. It must physically handle the users customized household environment and the objects therein, i.e., how can the items needed to set up the table be grasped and moved, how can the kitchen cabinets be opened, etc. Additionally the personal preferences of the user on how the breakfast table should be arranged must be respected. Due to the diverse characteristics of the custom objects and the individual human needs even a standard task like setting a breakfast table is impossible to pre-program before knowing the place of use and its occurrences. Therefore, the most promising way to engage robots as domestic help is to enable them to learn the tasks they should perform directly by their owners, without requiring the owner to possess any special knowledge of robotics or programming skills. Throughout this thesis we present various contributions addressing these challenges. Although learning from demonstration is a well-established approach to teaching robots without explicit programming, most approaches in literature for learning manipulation actions use kinesthetic training as these actions require thorough knowledge of the interactions between the robot and the object which can be learned directly by kinesthetic teaching since no abstraction is needed. In addition, in most current imitation learning approaches mobile platforms are not considered. In this thesis we present a novel approach to learn joint robot base and end-effector action models from observing demonstrations carried out by a human teacher. To achieve this we adapt trajectory data obtained from RGBD recordings of the human teacher performing the action to the capabilities of the robot. We formulate a graph optimization problem that the links the observed human trajectories with robot grasping capabilities and kinematic constraints between co-occurring base and gripper poses, allowing us to generate robot suitable trajectories. In a next step, we do not just learn individual manipulation actions, but to combine several actions into one task. Challenges arise from handling ambiguous goals and generalizing the task to new settings. We present an approach to learn both representations together from the same teacher demonstrations, one for individual mobile manipulation actions as described above, and one for the representation of the overall task intent. We leverage a framework based on Monte Carlo tree search to compute sequences of feasible actions imitating the teacher intention in new settings without explicitly specifying a task goal. In this way, we can reproduce complex tasks while ensuring that all composing actions are executable in the given setting. The mobile manipulation models mentioned above are encoded as dynamic systems to facilitate interaction with objects in world coordinates. However, this poses the challenge of translating kinematic constraints of the robot to the task space and including them in the action models. In this thesis we propose to couple robot base and end-effector motions generated by arbitrary dynamical systems by modulating the base velocity, while respecting the robots kinematic design. To this end we learn an approximation of the inverse reachability in closed form and implement the coupling as an obstacle avoidance problem. Furthermore, in this work we address the challenge of imitating manipulation actions, the execution of which depends on additional non-geometric quantities as, e.g., contact forces when handing over an object or measured liquid height, while pouring water into a cup. We suggest an approach to include this additional information in form of measured features directly into the action models. These features are recorded in the demonstrations alongside the geometric route of the manipulation action and their correlation is captured in a Gaussian Mixture Model that parametrizes the dynamic system used. This enables us to also couple the motion's geometric trajectory to the perceived features in the scene during action imitation. All the above described contributions were evaluated extensively in real world robot experiments on a PR2 system and a KUKA Iiwa Robot Arm


Probabilistic Mapping of Spatial Motion Patterns for Mobile Robots

Probabilistic Mapping of Spatial Motion Patterns for Mobile Robots
Author: Tomasz Piotr Kucner
Publisher: Springer Nature
Total Pages: 171
Release: 2020-03-28
Genre: Technology & Engineering
ISBN: 3030418081

Download Probabilistic Mapping of Spatial Motion Patterns for Mobile Robots Book in PDF, ePub and Kindle

This book describes how robots can make sense of motion in their surroundings and use the patterns they observe to blend in better in dynamic environments shared with humans.The world around us is constantly changing. Nonetheless, we can find our way and aren’t overwhelmed by all the buzz, since motion often follows discernible patterns. Just like humans, robots need to understand the patterns behind the dynamics in their surroundings to be able to efficiently operate e.g. in a busy airport. Yet robotic mapping has traditionally been based on the static world assumption, which disregards motion altogether. In this book, the authors describe how robots can instead explicitly learn patterns of dynamic change from observations, store those patterns in Maps of Dynamics (MoDs), and use MoDs to plan less intrusive, safer and more efficient paths. The authors discuss the pros and cons of recently introduced MoDs and approaches to MoD-informed motion planning, and provide an outlook on future work in this emerging, fascinating field.