Angle Resolved Photoemission Spectroscopy Studies Of 2d Material Heterostructures PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Angle Resolved Photoemission Spectroscopy Studies Of 2d Material Heterostructures PDF full book. Access full book title Angle Resolved Photoemission Spectroscopy Studies Of 2d Material Heterostructures.

Angle-Resolved Photoemission Spectroscopy Studies of 2D Material Heterostructures

Angle-Resolved Photoemission Spectroscopy Studies of 2D Material Heterostructures
Author: Eryin Wang
Publisher: Springer Nature
Total Pages: 90
Release: 2019-12-05
Genre: Technology & Engineering
ISBN: 981151447X

Download Angle-Resolved Photoemission Spectroscopy Studies of 2D Material Heterostructures Book in PDF, ePub and Kindle

This book focuses on angle-resolved photoemission spectroscopy studies on novel interfacial phenomena in three typical two-dimensional material heterostructures: graphene/h-BN, twisted bilayer graphene, and topological insulator/high-temperature superconductors. Since the discovery of graphene, two-dimensional materials have proven to be quite a large “family”. As an alternative to searching for other family members with distinct properties, the combination of two-dimensional (2D) materials to construct heterostructures offers a new platform for achieving new quantum phenomena, exploring new physics, and designing new quantum devices. By stacking different 2D materials together and utilizing interfacial periodical potential and order-parameter coupling, the resulting heterostructure’s electronic properties can be tuned to achieve novel properties distinct from those of its constituent materials. This book offers a valuable reference guide for all researchers and students working in the area of condensed matter physics and materials science.


2D Materials and Van der Waals Heterostructures

2D Materials and Van der Waals Heterostructures
Author: Antonio Di Bartolomeo
Publisher: MDPI
Total Pages: 170
Release: 2020-06-23
Genre: Science
ISBN: 3039287680

Download 2D Materials and Van der Waals Heterostructures Book in PDF, ePub and Kindle

The advent of graphene and, more recently, two-dimensional materials has opened new perspectives in electronics, optoelectronics, energy harvesting, and sensing applications. This book, based on a Special Issue published in Nanomaterials – MDPI covers experimental, simulation, and theoretical research on 2D materials and their van der Waals heterojunctions. The emphasis is the physical properties and the applications of 2D materials in state-of-the-art sensors and electronic or optoelectronic devices.


Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures

Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures
Author: Eui-Hyeok Yang
Publisher: Elsevier
Total Pages: 502
Release: 2020-06-19
Genre: Technology & Engineering
ISBN: 0128184760

Download Synthesis, Modelling and Characterization of 2D Materials and their Heterostructures Book in PDF, ePub and Kindle

Synthesis, Modelling and Characterization of 2D Materials and Their Heterostructures provides a detailed discussion on the multiscale computational approach surrounding atomic, molecular and atomic-informed continuum models. In addition to a detailed theoretical description, this book provides example problems, sample code/script, and a discussion on how theoretical analysis provides insight into optimal experimental design. Furthermore, the book addresses the growth mechanism of these 2D materials, the formation of defects, and different lattice mismatch and interlayer interactions. Sections cover direct band gap, Raman scattering, extraordinary strong light matter interaction, layer dependent photoluminescence, and other physical properties. Explains multiscale computational techniques, from atomic to continuum scale, covering different time and length scales Provides fundamental theoretical insights, example problems, sample code and exercise problems Outlines major characterization and synthesis methods for different types of 2D materials


2D Materials

2D Materials
Author: Phaedon Avouris
Publisher: Cambridge University Press
Total Pages: 521
Release: 2017-06-29
Genre: Technology & Engineering
ISBN: 1316738132

Download 2D Materials Book in PDF, ePub and Kindle

Learn about the most recent advances in 2D materials with this comprehensive and accessible text. Providing all the necessary materials science and physics background, leading experts discuss the fundamental properties of a wide range of 2D materials, and their potential applications in electronic, optoelectronic and photonic devices. Several important classes of materials are covered, from more established ones such as graphene, hexagonal boron nitride, and transition metal dichalcogenides, to new and emerging materials such as black phosphorus, silicene, and germanene. Readers will gain an in-depth understanding of the electronic structure and optical, thermal, mechanical, vibrational, spin and plasmonic properties of each material, as well as the different techniques that can be used for their synthesis. Presenting a unified perspective on 2D materials, this is an excellent resource for graduate students, researchers and practitioners working in nanotechnology, nanoelectronics, nanophotonics, condensed matter physics, and chemistry.


Angle-Resolved Photoemission

Angle-Resolved Photoemission
Author: S.D. Kevan
Publisher: Elsevier
Total Pages: 609
Release: 1992-05-15
Genre: Science
ISBN: 9780080887463

Download Angle-Resolved Photoemission Book in PDF, ePub and Kindle

Angle-resolved photoemission has become an indispensable tool for solid state and surface physicists and chemists. This book covers the underlying phenomenology of the technique, reviews its application to existing problems, and discusses future applications. The book is particularly timely given the significant improvements in experimental and theoretical methodology which have recently been or soon will be attained, namely, ultrahigh resolution studies using improved sources of synchrotron radiation, quasiparticle interpretation of measured dispersion relations and spectra, in situ growth of novel materials, etc. The technique has been applied predominantly to understand materials for which the one-electron paradigm is a reasonable approximation. Most chapters discuss this type of experiment: 2D and 3D states in metals and semiconductors, extrinsic states induced by adsorption, etc. Applications of the technique to materials where electron correlation plays a comparable role to that of solid state hybridization, ferro- and antiferromagnets, high Tc superconductors, etc. are rapidly growing in popularity. These areas are also discussed and a foundation is laid for further experiments in this direction. Almost all chapters contain comprehensive bibliographies and compendia of systems studied. The book has an extensive index which cross references applications and systems studied.


Spectroscopy of Complex Oxide Interfaces

Spectroscopy of Complex Oxide Interfaces
Author: Claudia Cancellieri
Publisher: Springer
Total Pages: 320
Release: 2018-04-09
Genre: Technology & Engineering
ISBN: 3319749897

Download Spectroscopy of Complex Oxide Interfaces Book in PDF, ePub and Kindle

This book summarizes the most recent and compelling experimental results for complex oxide interfaces. The results of this book were obtained with the cutting-edge photoemission technique at highest energy resolution. Due to their fascinating properties for new-generation electronic devices and the challenge of investigating buried regions, the book chiefly focuses on complex oxide interfaces. The crucial feature of exploring buried interfaces is the use of soft X-ray angle-resolved photoemission spectroscopy (ARPES) operating on the energy range of a few hundred eV to increase the photoelectron mean free path, enabling the photons to penetrate through the top layers – in contrast to conventional ultraviolet (UV)-ARPES techniques. The results presented here, achieved by different research groups around the world, are summarized in a clearly structured way and discussed in comparison with other photoemission spectroscopy techniques and other oxide materials. They are complemented and supported by the most recent theoretical calculations as well as results of complementary experimental techniques including electron transport and inelastic resonant X-ray scattering.


2D Monoelemental Materials (Xenes) and Related Technologies

2D Monoelemental Materials (Xenes) and Related Technologies
Author: Zongyu Huang
Publisher: CRC Press
Total Pages: 166
Release: 2022-04-19
Genre: Science
ISBN: 1000562840

Download 2D Monoelemental Materials (Xenes) and Related Technologies Book in PDF, ePub and Kindle

Monoelemental 2D materials called Xenes have a graphene-like structure, intra-layer covalent bond, and weak van der Waals forces between layers. Materials composed of different groups of elements have different structures and rich properties, making Xenes materials a potential candidate for the next generation of 2D materials. 2D Monoelemental Materials (Xenes) and Related Technologies: Beyond Graphene describes the structure, properties, and applications of Xenes by classification and section. The first section covers the structure and classification of single-element 2D materials, according to the different main groups of monoelemental materials of different components and includes the properties and applications with detailed description. The second section discusses the structure, properties, and applications of advanced 2D Xenes materials, which are composed of heterogeneous structures, produced by defects, and regulated by the field. Features include: Systematically detailed single element materials according to the main groups of the constituent elements Classification of the most effective and widely studied 2D Xenes materials Expounding upon changes in properties and improvements in applications by different regulation mechanisms Discussion of the significance of 2D single-element materials where structural characteristics are closely combined with different preparation methods and the relevant theoretical properties complement each other with practical applications Aimed at researchers and advanced students in materials science and engineering, this book offers a broad view of current knowledge in the emerging and promising field of 2D monoelemental materials.


Biomedical Applications of Graphene and 2D Nanomaterials

Biomedical Applications of Graphene and 2D Nanomaterials
Author: Md Nurunnabi
Publisher: Elsevier
Total Pages: 399
Release: 2019-03-31
Genre: Technology & Engineering
ISBN: 0128162694

Download Biomedical Applications of Graphene and 2D Nanomaterials Book in PDF, ePub and Kindle

Biomedical Applications of Graphene and 2D Nanomaterials provides a much-needed reference on the biomedical applications of 2D nanomaterials, as well as theoretical knowledge on their structure, physicochemical properties and biomedical applications. Chapters are dedicated to growth areas, such as size and shape-dependent chemical and physical properties and applications, such as in diagnostic and therapeutic products. The book also discusses the concept, development and preclinical studies of 2D nanomaterials-based biomedical tools, such as biosensors, artificial organs and photomedicine. Case studies and reports form the core of the book, making it an ideal resource on potential applications in biomedical science and engineering. This timely resource for scientists and engineers in this rapidly advancing field features contributions from over 30 leaders who address advanced methods and strategies for controlling the physical-chemical properties of 2D nanomaterials, along with expert opinions on a range of 2D nanomaterials that have therapeutic and diagnostic applications. Presents advanced methods and strategies for controlling the physical-chemical properties of 2D nanomaterials Provides state-of-the-art biomedical applications for 2D nanomaterials, including graphene and boron nitride Includes key information from a broad selection of subject areas for researchers in both materials, engineering and medicine


Density Waves In Solids

Density Waves In Solids
Author: George Gruner
Publisher: CRC Press
Total Pages: 288
Release: 2018-03-08
Genre: Science
ISBN: 0429969562

Download Density Waves In Solids Book in PDF, ePub and Kindle

?Density Waves in Solids is written for graduate students and scientists interested in solid-state sciences. It discusses the theoretical and experimental state of affairs of two novel types of broken symmetry ground states of metals, charge, and spin density waves. These states arise as the consequence of electron-phonon and electron-electron interactions in low-dimensional metals.Some fundamental aspects of the one-dimensional electron gas, and of the materials with anisotropic properties, are discussed first. This is followed by the mean field theory of the phases transitions?discussed using second quantized formalism?together with the various experimental observations on the transition and on the ground states. Fluctuation effects and the collective excitations are reviewed next, using the Ginzburg-Landau formalism, followed by the review of the interaction of these states with the underlying lattice and with impurities. The final chapters are devoted to the response of the ground states to external perturbations.


Monatomic Two-Dimensional Layers

Monatomic Two-Dimensional Layers
Author: Iwao Matsuda
Publisher: Elsevier
Total Pages: 232
Release: 2018-08-22
Genre: Science
ISBN: 0128141611

Download Monatomic Two-Dimensional Layers Book in PDF, ePub and Kindle

Monatomic Two-Dimensional Layers: Properties, Fabrication and Industrial Applications provides a detailed examination on basic principles and state-of-the-art experimental techniques for monatomic layers on model surfaces, and in operating devices. Both conventional surface science and novel 2D materials science are included. The reader is guided through an introduction to the basic science of the field that is followed by advanced science specific to the system. Characterization techniques, the principles of state-of-the-art instruments for monatomic layers, and topics, including positron diffraction, time-resolved photoemission spectroscopy, surface transport measurements, and operando nanospectroscopy are also covered. Researchers, graduate students and professionals will find this volume invaluable to acquire a deeper knowledge of the basic science, preparation, and experimental characterization techniques for 2D materials. Industrial technicians and operators will find it a useful overview of surface science related methods for fabrication and characterization of 2D materials. Gives comprehensive access to the properties of 2D materials, selected fabrication methods, and advanced characterization tools Discusses structure analysis by diffraction methods and ‘operando’ spectroscopy to provide direct information on device performance for industrial applications Written by authors who developed the techniques and have conducted extensive research on monatomic layers