Analytical Investigation Of Unconventional Reservoir Performance During Early Transient Multi Phase Flow Conditions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Analytical Investigation Of Unconventional Reservoir Performance During Early Transient Multi Phase Flow Conditions PDF full book. Access full book title Analytical Investigation Of Unconventional Reservoir Performance During Early Transient Multi Phase Flow Conditions.

Analytical Investigation of Unconventional Reservoir Performance During Early-transient Multi-phase Flow Conditions

Analytical Investigation of Unconventional Reservoir Performance During Early-transient Multi-phase Flow Conditions
Author: Miao Zhang
Publisher:
Total Pages:
Release: 2016
Genre:
ISBN:

Download Analytical Investigation of Unconventional Reservoir Performance During Early-transient Multi-phase Flow Conditions Book in PDF, ePub and Kindle

Unconventional gas resources accounted for more than 50% of total U.S. gas production in 2012 and its contribution is expected to increase to 75% by 2040 (EIA, 2015). In these unconventional gas reservoirs, reservoir and fluid characteristics can be significantly different from those in conventional resources, rendering traditional production data analysis methods inadequate. Those effects include long-time transient periods due to ultra-low permeability, pressure-dependent permeability and exemplified large capillary pressure. Development of reliable analysis methods to successfully capture these complex effects demands the formulation of new solutions to the governing flow equations which consider these complex nonlinearities. It is the interest of this study to develop more rigorous performance models for these types of systems derived from fundamental governing flow equations. This study presents a series of novel and rigorous semi-analytical solutions to the governing partial differential equations applicable to single-phase gas and multiphase flow in unconventional reservoirs. Focusing on early-transient periods, the proposed semi-analytical method utilizes similarity theory to transform the system of nonlinear PDEs to ordinary differential form, which is later solved via shooting method coupled Runge-Kutta numerical integration. The work starts with early-transient single-phase gas flow in linear and radial flow regimes under constant pressure and rate production conditions, followed by its direct extension to multiphase flow system using the black-oil fluid formulation. The application of the proposed multiphase flow solution to actual productionhighlighting producing gas-oil-ratio predictionis also discussed. Additionally, the proposed semi-analytical solution is proven capable of solving the multiphase flow equations under fully compositional fluid formulation. In the last chapter, capillary pressure effectsa multiphase flow effect widely recognized to be significant in unconventional system due to nano-scale pore sizeis studied using the proposed semi-analytical method. Besides studying capillary pressure as an additional pressure drop on fluid flow, the effect of capillary pressure on phase behavior and properties is also analyzed. All the results in this work are validated by matching with finely-gridded commercial numerical simulator.


Unconventional Reservoir Rate-Transient Analysis

Unconventional Reservoir Rate-Transient Analysis
Author: Clarkson C.R.
Publisher: Gulf Professional Publishing
Total Pages: 1144
Release: 2021-06-15
Genre: Science
ISBN: 0323901174

Download Unconventional Reservoir Rate-Transient Analysis Book in PDF, ePub and Kindle

Unconventional Reservoir Rate-Transient Analysis provides petroleum engineers and geoscientists with the first comprehensive review of rate-transient analysis (RTA) methods as applied to unconventional reservoirs. Volume One—Fundamentals, Analysis Methods, and Workflow is comprised of five chapters which address key concepts and analysis methods used in RTA. This volume overviews the fundamentals of RTA, as applied to low-permeability oil and gas reservoirs exhibiting simple reservoir and fluid characteristics. Volume Two—Application to Complex Reservoirs, Exploration and Development is comprised of four chapters that demonstrate how RTA can be applied to coalbed methane reservoirs, shale gas reservoirs, and low-permeability/shale reservoirs exhibiting complex behavior such as multiphase flow. Use of RTA to assist exploration and development programs in unconventional reservoirs is also demonstrated. This book will serve as a critical guide for students, academics, and industry professionals interested in applying RTA methods to unconventional reservoirs. Gain a comprehensive review of key concepts and analysis methods used in modern rate-transient analysis (RTA) as applied to low-permeability ("tight") oil and gas reservoirs Improve your RTA methods by providing reservoir/hydraulic fracture properties and hydrocarbon-in-place estimates for unconventional gas and light oil reservoirs exhibiting complex reservoir behaviors Understand the provision of a workflow for confident application of RTA to unconventional reservoirs


Mathematical Development for Flowback Rate Transient Analysis

Mathematical Development for Flowback Rate Transient Analysis
Author: Yun Yang
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

Download Mathematical Development for Flowback Rate Transient Analysis Book in PDF, ePub and Kindle

Unconventional gas reservoirs, such as tight gas and shale gas, appear to have great potential to supply future demand for hydrocarbon. Economics of these reservoirs are tied closely to the performance of multi-fractured horizontal wells (MFHWs), which is the most direct indicator of stimulation effectiveness. Thus, greater understanding and analysis of the factors affecting performance of MFHWs are critical for the efficient exploitation of such reservoirs. Hydrocarbon production data analysis (PDA) techniques have been commonly used to characterize hydraulic fracture (HF) and, ultimately, to evaluate hydraulic-fracturing jobs. Recent studies have shown that rate transient analysis of flowback data can also provide early insight into HF attributes. While PDA methods seek long-time production data, flowback analysis can be conducted using early water and gas production data obtained immediately after the completion of stimulation jobs. However, in comparison with the long-term hydrocarbon production period, the physics of the process is more difficult to capture during flowback production because of its short duration, at which one or more flow regimes may occur. In addition, the flowback flow system could be single- or two-phase, depending on reservoir type. According to reported field data, single-phase flowback can be observed in tight sands, but two-phase flow is expected in the case of shale gas. Although various mathematical models have been proposed to analyze single-phase (water) and two-phase (gas and water) flowback data, analytical models for interpretation of data are still at an early stage of development. The objectives of this study are first to reproduce the relevant analytical models available in literature and understand their advantages and limitations; then, to develop single-phase and two-phase analytical models capable of predicting HF attributes such as fracture half-length and fracture permeability using early water and gas production data. In this study, a set of numerical simulations was conducted using CMG (IMEX) to examine the capacity of available mathematical models. It was found that most of the single-phase flowback models in the literature are accurate only under pseudo steady-state conditions, where a boundary-dominated flow regime with a constant production rate has been established. Another limitation of current models is that they can only estimate one fracture attributes: kf or xf. Knowing the shortcomings of current models, I developed a set of analytical models for both single- and two-phase systems, which were validated against numerical simulations. The single-phase model can closely estimate HF attributes, such as permeability and half-length under constant pressure as well as constant flowrate condition, for both transient and boundary dominated flow periods. Furthermore, I extended the developed single-phase model to variable bottomhole conditions by employing superposition principle. In the case of two-phase flow system, I developed an analytical model under fracture depletion mechanism for both early gas production (EGP) and late gas production (LGP) periods. In the case of EGP, gas flux from matrix to HF is assumed to be negligible. Comparisons of numerical results with those obtained from the analytical model show that the developed two-phase model for EGP can accurately predict fracture attributes. In the case of LGP, a coupled model is developed to include the effect of gas influx from matrix to HF on flowback data, where a uniform pressure decline rate is assumed in fracture-matrix system. The two-phase model has the advantage of linear behavior of water properties and avoids the computational complexity. With typical Barnett shale properties input in the numerical simulation, the analytical model can accurately estimate fracture attributes within a 10% error margin. Sensitivity analyses of fracture conductivity and initial water saturation in fracture have been conducted to illustrate the validity of two-phase flowback model applied in LGP. The results reveal that, within the physical range of fracture conductivity and initial water saturation, the two-phase flowback model can accurately evaluate fracture attributes. However, the model is more accurate for cases with smaller fracture conductivity and higher initial water saturation in fracture.


Long-term Well Performance Prediction in Unconventionaltight Gas And Shale Gas Reservoirs

Long-term Well Performance Prediction in Unconventionaltight Gas And Shale Gas Reservoirs
Author: Pichit Vardcharragosad
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Long-term Well Performance Prediction in Unconventionaltight Gas And Shale Gas Reservoirs Book in PDF, ePub and Kindle

Unconventional tight gas and shale gas are the largest and fastest growing natural gas supply in the US. Natural gas produced from tight gas and shale gas reservoirs accounts for 60% of U.S. natural gas production in 2011. This number is expected to increase to 73% in 2040 (EIA, 2013). The lack of understanding and the lack of tools that can be applied to these unconventional plays are the major challenges. In unconventional tight gas and shale gas, the conventional reservoir engineering tools have been proven to be unsuccessful because they fail to capture the large differences in physical properties which heavily impact the production behaviors. The main differences include the ultra-low permeability of the formation, presence of adsorbed phase, and the need for multi-stage hydraulically fractured horizontal well completion to create massive flow area.This study aims to develop new reservoir engineering analysis techniques which fully apply for unconventional tight gas and shale gas reservoirs. The new techniques should be able to capture the reservoir responses that are characterized by the transient flow regime and the multi-mechanistic flow in ultra-low permeability formations, the complex flow pattern from hydraulic fracture completion, and the natural gas desorption. We focus on formulating the fundamental, physics-based governing equation for these tight gas and shale gas reservoirs, as well as the long-term analysis and prediction tools that can capture their physical properties. The research applies new promising tools, a density approach, which was proposed to the industry by our research group. In the density method, gas diffusivity equation will be solved in a density-based form, and effects of reservoir depletion on fluid properties are captured through dimensionless variable, [lambda]-[beta]. The density method has been proven to be a reliable production data analysis tool applicable to conventional gas reservoirs produced under constant flowing pressure, constant flow rate, variable pressure/rate constraint as well as in reservoirs with significant rock compressibility. In this thesis, we prove that density-based technique can be further extended to analyze production data from i) gas linear and fractal flow under boundary dominating condition, ii) gas radial, linear, and fractal flow with significant transient flow period, and iii) gas flow under slippage and desorption effects. We demonstrate that [lambda]-[beta] can effectively quantify effects of depletion on gas properties in reservoirs with linear, radial, and fractal flow. We also show how to incorporate slippage and desorption effects as well as transient flow effect by properly modified definitions of [lambda]-[beta]. Based on these results, we are able to show that the density-based production analysis tools, originally developed for conventional gas reservoirs under boundary dominated radial flow, can be applied to predict and analyze production from unconventional gas reservoirs. In addition, we are able to use these density-based tools to analyze the impact of flow geometries on production decline behavior of gas wells.


Multiphase Fluid Flow in Porous and Fractured Reservoirs

Multiphase Fluid Flow in Porous and Fractured Reservoirs
Author: Yu-Shu Wu
Publisher: Gulf Professional Publishing
Total Pages: 420
Release: 2015-09-23
Genre: Science
ISBN: 0128039116

Download Multiphase Fluid Flow in Porous and Fractured Reservoirs Book in PDF, ePub and Kindle

Multiphase Fluid Flow in Porous and Fractured Reservoirs discusses the process of modeling fluid flow in petroleum and natural gas reservoirs, a practice that has become increasingly complex thanks to multiple fractures in horizontal drilling and the discovery of more unconventional reservoirs and resources. The book updates the reservoir engineer of today with the latest developments in reservoir simulation by combining a powerhouse of theory, analytical, and numerical methods to create stronger verification and validation modeling methods, ultimately improving recovery in stagnant and complex reservoirs. Going beyond the standard topics in past literature, coverage includes well treatment, Non-Newtonian fluids and rheological models, multiphase fluid coupled with geomechanics in reservoirs, and modeling applications for unconventional petroleum resources. The book equips today’s reservoir engineer and modeler with the most relevant tools and knowledge to establish and solidify stronger oil and gas recovery. Delivers updates on recent developments in reservoir simulation such as modeling approaches for multiphase flow simulation of fractured media and unconventional reservoirs Explains analytical solutions and approaches as well as applications to modeling verification for today’s reservoir problems, such as evaluating saturation and pressure profiles and recovery factors or displacement efficiency Utilize practical codes and programs featured from online companion website


Pressure Transient Analysis

Pressure Transient Analysis
Author: Djebbar Tiab
Publisher: Elsevier
Total Pages: 1074
Release: 2024-08-23
Genre: Technology & Engineering
ISBN: 044326497X

Download Pressure Transient Analysis Book in PDF, ePub and Kindle

Pressure Transient Analysis: Pressure Derivative provides focuses on applications of pressure and derivative data for interpretation of pressure transient tests, offering alternatives to costly commercial software. Building from basics, this practical text spans: wells near single and multi-boundary systems, hydraulically fractured wells, naturally fractured reservoirs, interpretation of interference and pulse tests, gas well test analysis (including sources of emissions and decarbonizing strategies, geological sequestration, CCS risks and stress on CCS), multiphase flow, injectivity and falloff tests, rate transient and multi-rate tests, partially penetrated / perforated vertical and slanted wells, and horizontal wells in conventional and unconventional reservoirs. Many techniques and equations presented in this book can be found in the black box of commercial well-test analysis software packages – this practical text unlocks, unpacks, and makes critical, analytical tools accessible to core users. Delivers an alternative technique to type-curve matching using the loglog analysis Introduces simple analytical equations used in the step-by-step procedure for analyzing pressure transient tests Presents common cases encountered by practicing engineers inspired by a robust literature review, boasting over 500 diverse, global sources Includes (75) solved simulated exercises and field cases, along with (81) unsolved problems (simulated and field cases) to reinforce learning Supports sustainability and the reduction of carbon emissions by addressing carbon footprints, emissions sources and decarbonizing strategies, carbon capture, storage, and CO2 storage


Unconventional Reservoirs: Rate and Pressure Transient Analysis Techniques

Unconventional Reservoirs: Rate and Pressure Transient Analysis Techniques
Author: Amin Taghavinejad
Publisher: Springer Nature
Total Pages: 119
Release: 2021-09-13
Genre: Technology & Engineering
ISBN: 3030828379

Download Unconventional Reservoirs: Rate and Pressure Transient Analysis Techniques Book in PDF, ePub and Kindle

This book provides a succinct overview on the application of rate and pressure transient analysis in unconventional petroleum reservoirs. It begins by introducing unconventional reservoirs, including production challenges, and continues to explore the potential benefits of rate and pressure analysis methods. Rate transient analysis (RTA) and pressure transient analysis (PTA) are techniques for evaluating petroleum reservoir properties such as permeability, original hydrocarbon in-place, and hydrocarbon recovery using dynamic data. The brief introduces, describes and classifies both techniques, focusing on the application to shale and tight reservoirs. Authors have used illustrations, schematic views, and mathematical formulations and code programs to clearly explain application of RTA and PTA in complex petroleum systems. This brief is of an interest to academics, reservoir engineers and graduate students.


Production Analysis and Forecasting of Shale Reservoirs Using Simple Mechanistic and Statistical Modeling

Production Analysis and Forecasting of Shale Reservoirs Using Simple Mechanistic and Statistical Modeling
Author: Leopoldo Matias Ruiz Maraggi
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Production Analysis and Forecasting of Shale Reservoirs Using Simple Mechanistic and Statistical Modeling Book in PDF, ePub and Kindle

Accurate production analysis and forecasting of well’s performance is essential to estimate reserves and to develop strategies to optimize hydrocarbon recovery. In the case of shale resources, this task is particularly challenging for the following reasons. First, these reservoirs show long periods of transient linear flow in which the reservoir volume grows continuously over time acting without bounds. Second, variable operating conditions cause scatter and abrupt production changes. Finally, the presence of competing flow mechanisms, heterogeneities, and multi-phase flow effects make the production analysis more complex. Detailed numerical flow models can address the complexities present in unconventional reservoirs. However, these models suffer from the following limitations: (a) the uncertainty of many input parameters, (b) susceptibility to overfit the data, (c) lack of interpretability of their results, and (d) high computational expense. This dissertation provides new and simple mechanistic and statistical modeling tools suitable to improve the production analysis and forecasts of shale reservoirs. This work presents solutions to the following research problems. This study develops and applies a new two-phase (oil and gas) flow suitable to history-match and forecast production of tight-oil and gas-condensate reservoirs producing below bubble- and dew-point conditions, respectively. It solves flow equations in dimensionless form and uses only two scaling parameters (hydrocarbon in-place and characteristic time) to history-match production. For this reason, the model requires minimal time to run making it ideal for decline curve analysis on large numbers of wells. This research illustrates the development and application of a Bayesian framework that generates probabilistic production history matches and forecasts to address the uncertainty of model’s estimates. This work uses an adaptative Metropolis-Hastings Markov chain Monte Carlo (MCMC) algorithm to guarantee a fast convergence of the Markov chains by accounting for the correlation among model’s parameters. In addition, this study calibrates the model’s probabilistic estimates using hindcasting and evaluates the inferences robustness using posterior predictive checks. This dissertation examines the problem of evaluation, ranking and selection, and averaging of models for improved probabilistic production history-matching and forecasting. We illustrate the assessment of the predictive accuracy of four rate-time models using the expected log predictive density (elpd) accuracy metric along with cross-validation techniques (leave-one-out and leave-future-out). The elpd metric provides a measure of out-of-sample predictive accuracy of a model’s posterior distribution. The application of Pareto smoothed importance sampling (PSIS) allows to use cross-validation techniques without the need of refitting Bayesian models. Using the Bayesian Bootstrap, this work generates a model ensemble that weighs each individual model based on the accuracy of its predictions. Finally, this research applies a novel deconvolution technique to incorporate changing operating conditions into rate-time analysis of tight-oil and shale gas reservoirs. Furthermore, this work quantifies the errors and discusses the limitations of the standard rate-transient analysis technique used in production analysis of unconventional reservoirs: rate normalization and material balance time


Quantitative Methods in Reservoir Engineering

Quantitative Methods in Reservoir Engineering
Author: Wilson C Chin
Publisher: Gulf Professional Publishing
Total Pages: 708
Release: 2016-10-01
Genre: Technology & Engineering
ISBN: 012811097X

Download Quantitative Methods in Reservoir Engineering Book in PDF, ePub and Kindle

Quantitative Methods in Reservoir Engineering, Second Edition, brings together the critical aspects of the industry to create more accurate models and better financial forecasts for oil and gas assets. Updated to cover more practical applications related to intelligent infill drilling, optimized well pattern arrangement, water flooding with modern wells, and multiphase flow, this new edition helps reservoir engineers better lay the mathematical foundations for analytical or semi-analytical methods in today’s more difficult reservoir engineering applications. Authored by a worldwide expert on computational flow modeling, this reference integrates current mathematical methods to aid in understanding more complex well systems and ultimately guides the engineer to choose the most profitable well path. The book delivers a valuable tool that will keep reservoir engineers up-to-speed in this fast-paced sector of the oil and gas market. Stay competitive with new content on unconventional reservoir simulation Get updated with new material on formation testing and flow simulation for complex well systems and paths Apply methods derived from real-world case studies and calculation examples


Upscaling of Single- and Two-Phase Flow in Reservoir Engineering

Upscaling of Single- and Two-Phase Flow in Reservoir Engineering
Author: Hans Bruining
Publisher: CRC Press
Total Pages: 214
Release: 2021-11-14
Genre: Technology & Engineering
ISBN: 1000463303

Download Upscaling of Single- and Two-Phase Flow in Reservoir Engineering Book in PDF, ePub and Kindle

This book describes fundamental upscaling aspects of single-phase/two-phase porous media flow for application in petroleum and environmental engineering. Many standard texts have been written about this subject. What distinguishes this work from other available books is that it covers fundamental issues that are frequently ignored but are relevant for developing new directions to extend the traditional approach, but with an eye on application. Our dependence on fossil energy is 80–90% and is only slowly decreasing. Of the estimated 37 (~40) Gton/year, anthropogenic emissions of about 13 Gton/year of carbon dioxide remain in the atmosphere. An Exergy Return on Exergy Invested analysis shows how to obtain an unbiased quantification of the exergy budget and the carbon footprint. Thus, the intended audience of the book learns to quantify his method of optimization of recovery efficiencies supported by spreadsheet calculations. As to single-phase-one component fluid transport, it is shown how to deal with inertia, anisotropy, heterogeneity and slip. Upscaling requires numerical methods. The main application of transient flow is to find the reasons for reservoir impairment. The analysis benefits from solving the porous media flow equations using (numerical) Laplace transforms. The multiphase flow requires the definition of capillary pressure and relative permeabilities. When capillary forces dominate, we have dispersed (Buckley-Leverett flow). When gravity forces dominate, we obtain segregated flow (interface models). Miscible flow is described by a convection-dispersion equation. We give a simple proof that the dispersion coefficient can be approximated by Gelhar's relation, i.e., the product of the interstitial velocity, the variance of the logarithm of the permeability field and a correlation length. The book will appeal mostly to students and researchers of porous media flow in connection with environmental engineering and petroleum engineering.