Analysis Of Pattern Formation In The Heterocyst Forming Filamentous Cyanobacterium Anabaena Sp Strain Pcc 7120 PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Analysis Of Pattern Formation In The Heterocyst Forming Filamentous Cyanobacterium Anabaena Sp Strain Pcc 7120 PDF full book. Access full book title Analysis Of Pattern Formation In The Heterocyst Forming Filamentous Cyanobacterium Anabaena Sp Strain Pcc 7120.

Characterization of Genes Involved in Heterocyst Differentiation and Pattern Formation in the Cyanobacterium Anabaena Sp. Strain PCC 7120

Characterization of Genes Involved in Heterocyst Differentiation and Pattern Formation in the Cyanobacterium Anabaena Sp. Strain PCC 7120
Author: Pritty B. Borthakur
Publisher:
Total Pages: 194
Release: 2008
Genre: Anabaena
ISBN:

Download Characterization of Genes Involved in Heterocyst Differentiation and Pattern Formation in the Cyanobacterium Anabaena Sp. Strain PCC 7120 Book in PDF, ePub and Kindle

The goal of this research was to understand regulation of heterocyst differentiation in Anabaena sp. strain PCC 7120 by characterizing regulatory genes for heterocyst formation and their mutants. Anabaena is a filamentous cyanobacterium that forms specialized cells for nitrogen fixation, called heterocysts, which differentiate from vegetative cells at intervals of 10--12 cells. Two genes, patS and hetN, are known to suppress the differentiation of vegetative cells into heterocysts for establishing a de novo pattern and maintaining a pattern of heterocysts along the filament. A mutant, UHM100, was created to study the function of both genes by deleting patS and making expression of hetN conditional. This study has established that PatS and HetN are members of two separate heterocyst suppression pathways. In absence of nitrogen, inactivation of both patS and hetN increases heterocyst differentiation to nearly 100%, giving rise to a phenotype called 'multiple contiguous heterocysts' (Mch). UHM100 has an Mch phenotype even in the presence of combined nitrogen, which usually suppresses heterocyst differentiation. In absence of both patS and hetN, the expression of hetR, a master regulator of heterocyst differentiation, was observed in ~55% cells and was asynchronous. The distribution of heterocysts next to a vegetative cell in UHM 100 was found to be nonrandom. These results suggest that besides PatS and HetN, there are other factors that influence pattern formation in Anabaena PCC 7120. A heterocyst-deficient (Hef) spontaneous mutant, NSM6, was isolated from UHM 100. A novel gene, alr9018, from the Anabaena Epsilon plasmid complemented NSM6 and restored the Mch phenotype of this mutant. Transconjugants of Anabaena PCC 7120 containing the cloned alr9018 gene fixed 50% more N2 than PCC 7120, suggesting that multiple copies of alr9018 enhance heterocyst development. This is the first report showing that the Epsilon plasmid of Anabaena PCC 7120 contains genes involved in heterocyst differentiation. Expression of alr9018 was observed in both vegetative cells and heterocysts. Similar to alr9018, hetR could also restore the Mch phenotype in NSM6, suggesting functional similarity between a1r9018 and hetR. The Alr9018 protein contains an NTPase domain, which is a characteristic of proteins involved in signal transduction.


Heterocyst Morphogenesis and Gene Expression in Anabaena Sp. PCC 7120

Heterocyst Morphogenesis and Gene Expression in Anabaena Sp. PCC 7120
Author: Rodrigo Andres Mella Herrera
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download Heterocyst Morphogenesis and Gene Expression in Anabaena Sp. PCC 7120 Book in PDF, ePub and Kindle

Many multicellular cyanobacteria produce specialized nitrogen-fixing heterocysts. During diazotrophic growth of the model organism Anabaena (Nostoc) sp. strain PCC 7120, a regulated developmental pattern of single heterocysts separated by about 10 to 20 photosynthetic vegetative cells is maintained along filaments. Heterocyst structure and metabolic activity function to accommodate the oxygen-sensitive process of nitrogen fixation. This dissertation focuses on my research on heterocyst development, including morphogenesis, transport of molecules between cells in a filament, differential gene expression, and pattern formation. We using microarray experiments we found that conR (all0187) gene is necessary for normal septum-formation of vegetative cells, diazotrophic grow, and heterocyst morphogenesis. In our studies we characterized the expression of sigma factors genes in Anabaena PCC 7120 during heterocyst differentiation, and we found that the expression of sigC, sigG and sigE is localized primarily in heterocysts. Expression studies using sigE mutant showed that nifH is under the control of this specific sigma factor.


Characterization of Two Genes Up-regulated During Heterocyst Development in the Cyanobacterium Anabaena Sp. Strain PCC 7120

Characterization of Two Genes Up-regulated During Heterocyst Development in the Cyanobacterium Anabaena Sp. Strain PCC 7120
Author:
Publisher:
Total Pages:
Release: 2004
Genre:
ISBN:

Download Characterization of Two Genes Up-regulated During Heterocyst Development in the Cyanobacterium Anabaena Sp. Strain PCC 7120 Book in PDF, ePub and Kindle

Anabaena sp. strain PCC 7120 is a cyanobacterium that carries out photosynthesis in a manner similar to plants and is capable of nitrogen fixation. This organism has developed a necessary spatial separation of the incompatible processes of photosynthesis and nitrogen fixation, as nitrogen fixation is sensitive to oxygen that is produced during photosynthesis. A differentiated cell type, called a heterocyst, is formed when Anabaena is in an environment lacking nitrogen, and these cells are the sites of nitrogen fixation. Heterocyst formation occurs about every tenth cell along a filament of photosynthetic vegetative cells after 24-36 hours of nitrogen starvation. A screen for sequences up-regulated at the transcript level during heterocyst development in Anabaena identified adjacent loci alr4311 and all4312. The sequence of alr4311 suggests it encodes the ATP-binding protein of an ABC transporter complex, while that of all4312 suggests it encodes the response regulator of a two-component regulatory system. Phylogenetic analysis of the predicted protein sequences of alr4311 and all4312 indicated that both of these proteins have orthologs in Nostoc punctiforme and Anabaena variabilis, two filamentous, diazotrophic cyanobacteria. Additionally, alr4311 appears to be most similar to ABC transporters involved in the import of cobalt, while all4312 was most similar to uncharacterized response regulators. The transcripts of alr4311 and all4312 are expressed at low levels in vegetative cells, and increase in abundance after nitrogen starvation and the induction of heterocyst development. Northern analysis and real-time RT-PCR showed that expression of alr4311 and all4312 are induced as early as 3 hours after initiation of differentiation, and expression levels of both genes remain elevated through the first 24 hours of development. Expression of both of these genes was blocked in an ntcA mutant, and significantly decreased in a hetR mutant. alr4311 was shown to be part of an.


Cell Differentiation as Survival Strategy in the Filamentous Cyanobacterium Anabaena Variabilis ATCC 29413

Cell Differentiation as Survival Strategy in the Filamentous Cyanobacterium Anabaena Variabilis ATCC 29413
Author: Ritu Garg
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN:

Download Cell Differentiation as Survival Strategy in the Filamentous Cyanobacterium Anabaena Variabilis ATCC 29413 Book in PDF, ePub and Kindle

The planktonic freshwater filamentous cyanobacterium Anabaena variabilis ATCC 29413 (syn. Trichormus variabilis) grows as filaments of hundreds of cells and is capable of differentiating nitrogen fixing heterocysts, motile hormogonia and dormant akinetes from vegetative cells in response to different stress conditions. Under conditions of nitrogen limitation, heterocysts form in a semi-regular pattern and provide the filaments with organic nitrogen by fixing N2. Akinetes are transient spore-like cells enabling these bacteria to withstand harsh environmental conditions. When suitable growth conditions are available, the akinetes can germinate and produce new vegetative filaments, thereby providing cyanobacteria with a means of survival in changing habitats. Heterocysts and akinetes are characterized by the presence of a thick multilayered envelope, including an outermost polysaccharide and an inner glycolipid layer. Until now, the role of a glycolipid layer, which reduces the entry of oxygen into the heterocysts for the maintenance of a microoxic environment and nitrogen fixation, was unknown in spore-like akinetes. Therefore, in this work, the function of the gene Ava_2595 in A. variabilis, which is homolog to the known hglB gene, that encodes a putative polyketide synthase involved in heterocyst glycolipid synthesis in Anabaena sp. PCC 7120, a species which does not form akinetes, was elucidated. The hglB mutant was created and its phenotype was characterized and further investigated for the functionality of heterocysts and akinetes. This work revealed that the hglB mutant strain formed aberrant heterocysts and akinete-like cells, in which the specific glycolipid layers were absent demonstrating the requirement of HglB in glycolipid layer formation in both heterocyst and akinete envelope. Consequently, the mutant was unable to fix N2 under aerobic condition and to grow diazotrophically. This study also confirmed that both cell types use a glycolipid of identical chemical composition in their special envelopes. Furthermore, we unraveled the role of the glycolipids in protecting the akinetes against harsh conditions, like freezing, desiccation, oxidative stress and lytic enzymes. Severely reduced tolerance to stress conditions was exhibited by the akinetes lacking the glycolipids but under standard conditions, they could germinate normally. Our study established the dual role of the glycolipid layer in fulfilling different functions in the evolutionary-related specialized cells of cyanobacteria and indicated the existence of a common biosynthetic pathway for glycolipid synthesis in heterocysts and akinetes involving the same gene hglB. Akinetes accumulate large quantities of cytoplasmic reserve products, mainly glycogen and the nitrogen storage polymer cyanophycin during their differentiation. In this work, the physiological function of cyanophycin in akinete differentiation and germination was investigated which showed that the cyanophycin production is not required for these cellular processes. This study also summarized the significant morphological and physiological changes that occur during formation and germination of the akinetes in A. variabilis ATCC 29413. Further analysis of changes occurring during akinete formation and germination using scanning electron microscopy (SEM) found that the mature akinetes have a wrinkled envelope and during germination, the surface of the envelope smoothens upon increase in the cell size, and finally, the akinete envelope ruptures to release the short emerging filament. Also, in this work, the akinete envelope architecture of different layers, the exopolysaccharide and glycolipid layer, could be visualized and showed that this multilayered envelope helps to withstand the osmotic stress and to maintain the structural integrity. Finally, we demonstrated that the intercellular communication decreased during akinete formation as compared to the vegetative cells. In contrast, the cell communication was restored in freshly germinating filaments.


Synthetic Biology of Cyanobacteria

Synthetic Biology of Cyanobacteria
Author: Weiwen Zhang
Publisher: Springer
Total Pages: 357
Release: 2018-08-08
Genre: Medical
ISBN: 9811308543

Download Synthetic Biology of Cyanobacteria Book in PDF, ePub and Kindle

This volume highlights recent breakthroughs in the interdisciplinary areas of synthetic biology, metabolic engineering and bioprocess engineering for the production of green chemicals. It also presents practical experimental and computational tools for the design, construction and manipulation of cyanobacteria cell factories. The respective contributions cover new technologies in the field, such as novel genetic transformation techniques and bioinformatics analysis methods and address various aspects of cyanobacterial synthetic biology, offering a valuable resource for students and researchers in the fields of industry microbiology and biomedical engineering.


Characterization of PatA

Characterization of PatA
Author: Shirley S. Young
Publisher:
Total Pages: 86
Release: 2009
Genre: Anabaena
ISBN:

Download Characterization of PatA Book in PDF, ePub and Kindle