An Investigation Of Methods For Missing Data In Hierarchical Models For Discrete Data PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Investigation Of Methods For Missing Data In Hierarchical Models For Discrete Data PDF full book. Access full book title An Investigation Of Methods For Missing Data In Hierarchical Models For Discrete Data.

An Investigation of Methods for Missing Data in Hierarchical Models for Discrete Data

An Investigation of Methods for Missing Data in Hierarchical Models for Discrete Data
Author: Muhamad Rashid Ahmed
Publisher:
Total Pages: 224
Release: 2011
Genre:
ISBN:

Download An Investigation of Methods for Missing Data in Hierarchical Models for Discrete Data Book in PDF, ePub and Kindle

Hierarchical models are applicable to modeling data from complex surveys or longitudinal data when a clustered or multistage sample design is employed. The focus of this thesis is to investigate inference for discrete hierarchical models in the presence of missing data. This thesis is divided into two parts: in the first part, methods are developed to analyze the discrete and ordinal response data from hierarchical longitudinal studies. Several approximation methods have been developed to estimate the parameters for the fixed and random effects in the context of generalized linear models. The thesis focuses on two likelihood-based estimation procedures, the pseudo likelihood (PL) method and the adaptive Gaussian quadrature (AGQ) method. The simulation results suggest that AGQ is preferable to PL when the goal is to estimate the variance of the random intercept in a complex hierarchical model. AGQ provides smaller biases for the estimate of the variance of the random intercept. Furthermore, it permits greater flexibility in accommodating user-defined likelihood functions. In the second part, simulated data are used to develop a method for modeling longitudinal binary data when non-response depends on unobserved responses. This simulation study modeled three-level discrete hierarchical data with 30% and 40% missing data using a missing not at random (MNAR) missing-data mechanism. It focused on a monotone missing data-pattern. The imputation methods used in this thesis are: complete case analysis (CCA), last observation carried forward (LOCF), available case missing value (ACMVPM) restriction, complete case missing value (CCMVPM) restriction, neighboring case missing value (NCMVPM) restriction, selection model with predictive mean matching method (SMPM), and Bayesian pattern mixture model. All three restriction methods and the selection model used the predictive mean matching method to impute missing data. Multiple imputation is used to impute the missing values. These m imputed values for each missing data produce m complete datasets. Each dataset is analyzed and the parameters are estimated. The results from the m analyses are then combined using the method of Rubin (1987), and inferences are made from these results. Our results suggest that restriction methods provide results that are superior to those of other methods.


Sensitivity Analysis in Handling Discrete Data Missing at Random in Hierarchical Linear Models Via Multivariate Normality

Sensitivity Analysis in Handling Discrete Data Missing at Random in Hierarchical Linear Models Via Multivariate Normality
Author: Xiyu Zheng
Publisher:
Total Pages: 89
Release: 2016
Genre:
ISBN:

Download Sensitivity Analysis in Handling Discrete Data Missing at Random in Hierarchical Linear Models Via Multivariate Normality Book in PDF, ePub and Kindle

Abstract In a two-level hierarchical linear model(HLM2), the outcome as well as covariates may have missing values at any of the levels. One way to analyze all available data in the model is to estimate a multivariate normal joint distribution of variables, including the outcome, subject to missingness conditional on covariates completely observed by maximum likelihood(ML); draw multiple imputation (MI) of missing values given the estimated joint model; and analyze the hierarchical model given the MI [1,2]. The assumption is data missing at random (MAR). While this method yields efficient estimation of the hierarchical model, it often estimates the model given discrete missing data that is handled under multivariate normality. In this thesis, we evaluate how robust it is to estimate a hierarchical linear model given discrete missing data by the method. We simulate incompletely observed data from a series of hierarchical linear models given discrete covariates MAR, estimate the models by the method, and assess the sensitivity of handling discrete missing data under the multivariate normal joint distribution by computing bias, root mean squared error, standard error, and coverage probability in the estimated hierarchical linear models via a series of simulation studies. We want to achieve the following aim: Evaluate the performance of the method handling binary covariates MAR. We let the missing patterns of level-1 and -2 binary covariates depend on completely observed variables and assess how the method handles binary missing data given different values of success probabilities and missing rates. Based on the simulation results, the missing data analysis is robust under certain parameter settings. Efficient analysis performs very well for estimation of level-1 fixed and random effects across varying success probabilities and missing rates. MAR estimation of level-2 binary covariate is not well estimated when the missing rate in level-2 binary covariate is greater than 10%. The rest of the thesis is organized as follows: Section 1 introduces the background information including conventional methods for hierarchical missing data analysis, different missing data mechanisms, and the innovation and significance of this study. Section 2 explains the efficient missing data method. Section 3 represents the sensitivity analysis of the missing data method and explain how we carry out the simulation study using SAS, software package HLM7, and R. Section 4 illustrates the results and useful recommendations for researchers who want to use the missing data method for binary covariates MAR in HLM2. Section 5 presents an illustrative analysis National Growth of Health Study (NGHS) by the missing data method. The thesis ends with a list of useful references that will guide the future study and simulation codes we used.


Flexible Imputation of Missing Data, Second Edition

Flexible Imputation of Missing Data, Second Edition
Author: Stef van Buuren
Publisher: CRC Press
Total Pages: 444
Release: 2018-07-17
Genre: Mathematics
ISBN: 0429960352

Download Flexible Imputation of Missing Data, Second Edition Book in PDF, ePub and Kindle

Missing data pose challenges to real-life data analysis. Simple ad-hoc fixes, like deletion or mean imputation, only work under highly restrictive conditions, which are often not met in practice. Multiple imputation replaces each missing value by multiple plausible values. The variability between these replacements reflects our ignorance of the true (but missing) value. Each of the completed data set is then analyzed by standard methods, and the results are pooled to obtain unbiased estimates with correct confidence intervals. Multiple imputation is a general approach that also inspires novel solutions to old problems by reformulating the task at hand as a missing-data problem. This is the second edition of a popular book on multiple imputation, focused on explaining the application of methods through detailed worked examples using the MICE package as developed by the author. This new edition incorporates the recent developments in this fast-moving field. This class-tested book avoids mathematical and technical details as much as possible: formulas are accompanied by verbal statements that explain the formula in accessible terms. The book sharpens the reader’s intuition on how to think about missing data, and provides all the tools needed to execute a well-grounded quantitative analysis in the presence of missing data.


Data Analysis Using Regression and Multilevel/Hierarchical Models

Data Analysis Using Regression and Multilevel/Hierarchical Models
Author: Andrew Gelman
Publisher: Cambridge University Press
Total Pages: 654
Release: 2007
Genre: Mathematics
ISBN: 9780521686891

Download Data Analysis Using Regression and Multilevel/Hierarchical Models Book in PDF, ePub and Kindle

This book, first published in 2007, is for the applied researcher performing data analysis using linear and nonlinear regression and multilevel models.


Missing Data in Longitudinal Studies

Missing Data in Longitudinal Studies
Author: Michael J. Daniels
Publisher: CRC Press
Total Pages: 324
Release: 2008-03-11
Genre: Mathematics
ISBN: 1420011189

Download Missing Data in Longitudinal Studies Book in PDF, ePub and Kindle

Drawing from the authors' own work and from the most recent developments in the field, Missing Data in Longitudinal Studies: Strategies for Bayesian Modeling and Sensitivity Analysis describes a comprehensive Bayesian approach for drawing inference from incomplete data in longitudinal studies. To illustrate these methods, the authors employ


Missing Data Treatment of a Level-2 Variable in A 3-Level Hierarchical Linear Model

Missing Data Treatment of a Level-2 Variable in A 3-Level Hierarchical Linear Model
Author: Xiaofan Cai
Publisher:
Total Pages: 258
Release: 2008
Genre: Linear models (Statistics)
ISBN:

Download Missing Data Treatment of a Level-2 Variable in A 3-Level Hierarchical Linear Model Book in PDF, ePub and Kindle

Data used in educational research often come with a hierarchical structure such as students nested in classrooms and classrooms nested in schools. Hierarchical linear model (HLM) analysis allows applied researchers to incorporate the hierarchical structure of the data into data analysis to examine effects of variables at each level. However, problems such as missing data pose analytical challenges of biased estimation. With missing data occurring in level-2 variables in a 3-level HLM analysis, the choice of the missing data treatment may affect parameter estimation at all levels. This Monte Carlo simulation study was designed to compare performance of six missing data treatment (MDT) methods--listwise deletion, mean substitution, restrictive Expectation-Maximization (EM), inclusive EM, restrictive multiple imputation (MI) and inclusive MI in generating unbiased estimates in a 3-level HLM model. An "intercept-only" 3-level HLM model was adopted. Missingness was generated as missing at random (MAR) for a level-2 predictor variable. The six MDTs were applied and the imputed datasets were analyzed using the same HLM model. Parameter estimates from the imputed datasets were compared to those obtained from the complete datasets. The comparisons focused on the accuracy and precision of parameter estimates of fixed and random effects in the HLM model. Results revealed that every MDT method produced more biases in the estimates with high proportion of missingness, and their performances improved as the level-sample size increased. Listwise deletion was a viable choice when level-2 sample size was small, it generated the most accurate but less precise estimates. With medium and large sample sizes, the restrictive EM method was effective in producing accurate and precise estimates for fixed effects parameters at all levels. The inclusive EM method outperformed all other methods in producing accurate and precise estimates for random effects. The two MI methods did not produce satisfactory estimates for level-2 fixed effects. However, the inclusive MI outperformed the restrictive MI on level-2 estimates of both fixed and random effects across the study conditions. This study provides statistical evidence and practical recommendations for researchers who must consider different MDT methods when they encounter missing data in hierarchical data structures.


Handbook of Missing Data Methodology

Handbook of Missing Data Methodology
Author: Geert Molenberghs
Publisher: CRC Press
Total Pages: 600
Release: 2014-11-06
Genre: Mathematics
ISBN: 1439854610

Download Handbook of Missing Data Methodology Book in PDF, ePub and Kindle

Missing data affect nearly every discipline by complicating the statistical analysis of collected data. But since the 1990s, there have been important developments in the statistical methodology for handling missing data. Written by renowned statisticians in this area, Handbook of Missing Data Methodology presents many methodological advances and the latest applications of missing data methods in empirical research. Divided into six parts, the handbook begins by establishing notation and terminology. It reviews the general taxonomy of missing data mechanisms and their implications for analysis and offers a historical perspective on early methods for handling missing data. The following three parts cover various inference paradigms when data are missing, including likelihood and Bayesian methods; semi-parametric methods, with particular emphasis on inverse probability weighting; and multiple imputation methods. The next part of the book focuses on a range of approaches that assess the sensitivity of inferences to alternative, routinely non-verifiable assumptions about the missing data process. The final part discusses special topics, such as missing data in clinical trials and sample surveys as well as approaches to model diagnostics in the missing data setting. In each part, an introduction provides useful background material and an overview to set the stage for subsequent chapters. Covering both established and emerging methodologies for missing data, this book sets the scene for future research. It provides the framework for readers to delve into research and practical applications of missing data methods.


Longitudinal Data Analysis

Longitudinal Data Analysis
Author: Garrett Fitzmaurice
Publisher: CRC Press
Total Pages: 633
Release: 2008-08-11
Genre: Mathematics
ISBN: 142001157X

Download Longitudinal Data Analysis Book in PDF, ePub and Kindle

Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory


Multilevel Analysis

Multilevel Analysis
Author: Tom A B Snijders
Publisher: SAGE
Total Pages: 370
Release: 2011-10-30
Genre: Reference
ISBN: 1446289605

Download Multilevel Analysis Book in PDF, ePub and Kindle

The Second Edition of this classic text introduces the main methods, techniques and issues involved in carrying out multilevel modeling and analysis. Snijders and Bosker′s book is an applied, authoritative and accessible introduction to the topic, providing readers with a clear conceptual and practical understanding of all the main issues involved in designing multilevel studies and conducting multilevel analysis. This book provides step-by-step coverage of: • multilevel theories • ecological fallacies • the hierarchical linear model • testing and model specification • heteroscedasticity • study designs • longitudinal data • multivariate multilevel models • discrete dependent variables There are also new chapters on: • missing data • multilevel modeling and survey weights • Bayesian and MCMC estimation and latent-class models. This book has been comprehensively revised and updated since the last edition, and now discusses modeling using HLM, MLwiN, SAS, Stata including GLLAMM, R, SPSS, Mplus, WinBugs, Latent Gold, and SuperMix. This is a must-have text for any student, teacher or researcher with an interest in conducting or understanding multilevel analysis. Tom A.B. Snijders is Professor of Statistics in the Social Sciences at the University of Oxford and Professor of Statistics and Methodology at the University of Groningen. Roel J. Bosker is Professor of Education and Director of GION, Groningen Institute for Educational Research, at the University of Groningen.


Multiple Imputation for Two-level Hierarchical Models with Categorical Variables and Missing at Random Data

Multiple Imputation for Two-level Hierarchical Models with Categorical Variables and Missing at Random Data
Author: Katie L. Kunze
Publisher:
Total Pages: 131
Release: 2016
Genre: Bayesian statistical decision theory
ISBN:

Download Multiple Imputation for Two-level Hierarchical Models with Categorical Variables and Missing at Random Data Book in PDF, ePub and Kindle

Accurate data analysis and interpretation of results may be influenced by many potential factors. The factors of interest in the current work are the chosen analysis model(s), the presence of missing data, and the type(s) of data collected. If analysis models are used which a) do not accurately capture the structure of relationships in the data such as clustered/hierarchical data, b) do not allow or control for missing values present in the data, or c) do not accurately compensate for different data types such as categorical data, then the assumptions associated with the model have not been met and the results of the analysis may be inaccurate. In the presence of clustered/nested data, hierarchical linear modeling or multilevel modeling (MLM; Raudenbush & Bryk, 2002) has the ability to predict outcomes for each level of analysis and across multiple levels (accounting for relationships between levels) providing a significant advantage over single-level analyses. When multilevel data contain missingness, multilevel multiple imputation (MLMI) techniques may be used to model both the missingness and the clustered nature of the data. With categorical multilevel data with missingness, categorical MLMI must be used. Two such routines for MLMI with continuous and categorical data were explored with missing at random (MAR) data: a formal Bayesian imputation and analysis routine in JAGS (R/JAGS) and a common MLM procedure of imputation via Bayesian estimation in BLImP with frequentist analysis of the multilevel model in Mplus (BLImP/Mplus). Manipulated variables included interclass correlations, number of clusters, and the rate of missingness. Results showed that with continuous data, R/JAGS returned more accurate parameter estimates than BLImP/Mplus for almost all parameters of interest across levels of the manipulated variables. Both R/JAGS and BLImP/Mplus encountered convergence issues and returned inaccurate parameter estimates when imputing and analyzing dichotomous data. Follow-up studies showed that JAGS and BLImP returned similar imputed datasets but the choice of analysis software for MLM impacted the recovery of accurate parameter estimates. Implications of these findings and recommendations for further research will be discussed.