An Introduction To Nonlinear Optics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Introduction To Nonlinear Optics PDF full book. Access full book title An Introduction To Nonlinear Optics.

Introduction to Nonlinear Optics

Introduction to Nonlinear Optics
Author: Geoffrey New
Publisher: Cambridge University Press
Total Pages: 275
Release: 2011-04-07
Genre: Science
ISBN: 1139500767

Download Introduction to Nonlinear Optics Book in PDF, ePub and Kindle

Since the early days of nonlinear optics in the 1960s, the field has expanded dramatically, and is now a vast and vibrant field with countless technological applications. Providing a gentle introduction to the principles of the subject, this textbook is ideal for graduate students starting their research in this exciting area. After basic ideas have been outlined, the book offers a thorough analysis of second harmonic generation and related second-order processes, before moving on to third-order effects, the nonlinear optics of short optical pulses and coherent effects such as electromagnetically-induced transparency. A simplified treatment of high harmonic generation is presented at the end. More advanced topics, such as the linear and nonlinear optics of crystals, the tensor nature of the nonlinear coefficients and their quantum mechanical representation, are confined to specialist chapters so that readers can focus on basic principles before tackling these more difficult aspects of the subject.


An Introduction to Nonlinear Optics

An Introduction to Nonlinear Optics
Author: George C. Baldwin
Publisher: Springer Science & Business Media
Total Pages: 159
Release: 2012-12-06
Genre: Science
ISBN: 1461346150

Download An Introduction to Nonlinear Optics Book in PDF, ePub and Kindle

Many years spent in an industrial engineering laboratory have convinced me that there is ever-increasing need to present recent and current research in forms which can be easily assimilated by engineers, technical managers, and others concerned with applications and the development of new tech nology. There is a forbidding gap between the typical research paper, addressed by specialists to other specialists, and the popular-level account addressed to the layman. The second does not adequately prepare the engi neer for profitably studying the first; it does not impart sufficient depth of understanding to the manager who must make decisions on the relative merits of various approaches to a problem or on the potential contributions various specialists might make to his program. This book is the outgrowth of a review prepared to fill this need for engineers in a large corporation who were concerned with the industrial application of lasers. That review was written hurriedly, on a fixed budget, to a deadline; consequently, it contained oversimplifications and errors, not all of which were trivial. Nevertheless, the favorable response proved that such a review is indeed needed. It is hoped that this more finished work will prove useful to a wide variety of potential users of laser-centered devices and systems, and may even stimulate the generation of useful ideas.


Contemporary Nonlinear Optics

Contemporary Nonlinear Optics
Author: Robert Boyd
Publisher: Academic Press
Total Pages: 494
Release: 2012-12-02
Genre: Science
ISBN: 0323148204

Download Contemporary Nonlinear Optics Book in PDF, ePub and Kindle

Contemporary Nonlinear Optics discusses the different activities in the field of nonlinear optics. The book is comprised of 10 chapters. Chapter 1 presents a description of the field of nonlinear guided-wave optics. Chapter 2 surveys a new branch of nonlinear optics under the heading optical solitons. Chapter 3 reviews recent progress in the field of optical phase conjugation. Chapter 4 discusses ultrafast nonlinear optics, a field that is growing rapidly with the ability of generating and controlling femtosecond optical pulses. Chapter 5 examines a branch of nonlinear optics that may be termed nonlinear quantum optics. Chapter 6 reviews the new field of photorefractive adaptive neural networks. Chapter 7 presents a discussion of recent successes in the development of nonlinear optical media based on organic materials. Chapter 8 reviews the field of nonlinear optics in quantum confined structures. Chapter 9 reviews the field of nonlinear laser spectroscopy, with emphasis on advances made during the 1980s. Finally, Chapter 10 reviews the field of nonlinear optical dynamics by considering nonlinear optical systems that exhibit temporal, spatial, or spatio-temporal instabilities. This book is a valuable source for physicists and other scientists interested in optical systems and neural networks.


Extreme Nonlinear Optics

Extreme Nonlinear Optics
Author: Martin Wegener
Publisher: Springer Science & Business Media
Total Pages: 225
Release: 2006-03-30
Genre: Science
ISBN: 3540266887

Download Extreme Nonlinear Optics Book in PDF, ePub and Kindle

Following the birth of the laser in 1960, the field of "nonlinear optics" rapidly emerged. Today, laser intensities and pulse durations are readily available, for which the concepts and approximations of traditional nonlinear optics no longer apply. In this regime of "extreme nonlinear optics," a large variety of novel and unusual effects arise, for example frequency doubling in inversion symmetric materials or high-harmonic generation in gases, which can lead to attosecond electromagnetic pulses or pulse trains. Other examples of "extreme nonlinear optics" cover diverse areas such as solid-state physics, atomic physics, relativistic free electrons in a vacuum and even the vacuum itself. This book starts with an introduction to the field based primarily on extensions of two famous textbook examples, namely the Lorentz oscillator model and the Drude model. Here the level of sophistication should be accessible to any undergraduate physics student. Many graphical illustrations and examples are given. The following chapters gradually guide the student towards the current "state of the art" and provide a comprehensive overview of the field. Every chapter is accompanied by exercises to deepen the reader's understanding of important topics, with detailed solutions at the end of the book.


Fundamentals of Nonlinear Optics

Fundamentals of Nonlinear Optics
Author: Peter E. Powers
Publisher: CRC Press
Total Pages: 315
Release: 2011-05-25
Genre: Technology & Engineering
ISBN: 1420093525

Download Fundamentals of Nonlinear Optics Book in PDF, ePub and Kindle

Fundamentals of Nonlinear Optics encompasses a broad spectrum of nonlinear phenomena from second-harmonic generation to soliton formation. The wide use of nonlinear optical phenomena in laboratories and commercial devices requires familiarity with the underlying physics as well as practical device considerations. This text adopts a combined approach to analyze the complimentary aspects of nonlinear optics, enabling a fundamental understanding of both a given effect and practical device applications. After a review chapter on linear phenomena important to nonlinear optics, the book tackles nonlinear phenomena with a look at the technologically important processes of second-harmonic generation, sum-frequency and difference-frequency generation, and the electro-optic effect. The author covers these processes in considerable detail at both theoretical and practical levels as the formalisms developed for these effects carry to subsequent topics, such as four-wave mixing, self-phase modulation, Raman scattering, Brillouin scattering, and soliton formation. Consistently connecting theory, process, effects, and applications, this introductory text encourages students to master key concepts and to solve nonlinear optics problems—preparing them for more advanced study. Along with extensive problems at the end of each chapter, it presents general algorithms accessible to any scientific graphical and programming package. Watch the author speak about the book.


The Elements of Nonlinear Optics

The Elements of Nonlinear Optics
Author: Paul N. Butcher
Publisher: Cambridge University Press
Total Pages: 364
Release: 1990
Genre: Science
ISBN: 9780521424240

Download The Elements of Nonlinear Optics Book in PDF, ePub and Kindle

There has recently been a rapid growth of activity in nonlinear optics. Effects such as frequency doubling, stimulated Raman scattering, phase conjugation and solitons are of great interest both for their fundamental properties and their many important applications in science and engineering. It is mainly these applications - especially in telecommunications and information processing - that have stimulated the recent surge of activity. This book is a self contained account of the most important principles of nonlinear optics. Assuming only a familiarity with basic mathematics, the fundamentals of nonlinear optics are fully developed from basic concepts. The essential quantum mechanical apparatus is introduced and explained. In later chapters the underlying ideas are illustrated by discussing particular experimental configurations and materials. This book will be an invaluable introduction to the field for beginning graduates in physics or engineering, and will provide an excellent overview and reference work for active researchers in the field.


Nonlinear Optics

Nonlinear Optics
Author: Alan Newell
Publisher: CRC Press
Total Pages: 447
Release: 2018-05-04
Genre: Science
ISBN: 0429971397

Download Nonlinear Optics Book in PDF, ePub and Kindle

This book is about Nonlinear Optics, the study of how high-intensity light propagates through and interacts with matter. It takes the reader from the starting point of Maxwell's equations to some of the frontiers of modern research in the subject.


Introduction to Quantum Electronics and Nonlinear Optics

Introduction to Quantum Electronics and Nonlinear Optics
Author: Vitaliy V. Shtykov
Publisher: Springer Nature
Total Pages: 341
Release: 2020-03-21
Genre: Science
ISBN: 3030376141

Download Introduction to Quantum Electronics and Nonlinear Optics Book in PDF, ePub and Kindle

This textbook, based on the authors’ class-tested material, is accessible to students at the advanced undergraduate and graduate level in physics and engineering. While its primary function is didactic, this book’s comprehensive choice of topics and its clear and authoritative synthesis of ideas make it a useful reference for researchers, device engineers, and course instructors who wish to consolidate their knowledge of this field. The book takes the semi-classical approach where light is treated as a wave in accordance with the classical Maxwell equations, while matter is governed by quantum theory. It begins by introducing the postulates and mathematical framework of quantum theory, followed by the formalism of the density matrix which allows the transition from microscopic (quantum) quantities to macroscopic (classical) ones. Consequently, the equations describing the reaction of matter to the electromagnetic field in the form of polarization, magnetization, and current are derived. These equations (together with the Maxwell equations) form the complete system of equations sufficient to model a wide class of problems surrounding linear and nonlinear interactions of electromagnetic fields with matter. The nonlinear character of the governing equations determines parameters of the steady-state mode of the quantum generator and is also demonstrated in harmonic generation via propagation of laser radiation in various media. The touchstone description of magnetic phenomena will be of interest to scientists who deal with applications of magneto-resonance phenomena in biology and medicine. Other advanced topics covered include electric dipole transitions, magnetic dipole transitions, plasma transitions, and the devices that can be based on these and other electro-optical and nonlinear-optical systems. This textbook features numerous exercises, some of which are investigatory and some of which require computational solutions.


Applied Nonlinear Optics

Applied Nonlinear Optics
Author: Frits Zernike
Publisher: Courier Corporation
Total Pages: 212
Release: 2006-01-01
Genre: Science
ISBN: 048645360X

Download Applied Nonlinear Optics Book in PDF, ePub and Kindle

Directed toward physicists and engineers interested in the device applications enabled by nonlinear optics, this text is suitable for advanced undergraduates and graduate students. Its content is presented entirely on a classical basis and requires only an elementary knowledge of quantum mechanics. The authors demonstrate how real laboratory situations can diverge from ideal theory, acquainting readers with the kinds of problems common to construction of a nonlinear device. They also offer a detailed discussion of the practical problems and characteristics of nonlinear materials, as well as the selection procedures necessary to ensure the use of good material. Their treatment begins with an introduction to the theories of linear and nonlinear optics, along with the basic ideas behind them. Succeeding chapters explore phase matching and nonlinear materials, followed by detailed treatments of second-harmonic generation, parametric up-conversion, and optical parametric amplification and oscillation. Appendixes offer a comprehensive list of materials and their properties; the text concludes with references and an index.


Introduction to Nonlinear Laser Spectroscopy

Introduction to Nonlinear Laser Spectroscopy
Author: Marc Levenson
Publisher: Elsevier
Total Pages: 271
Release: 2012-12-02
Genre: Science
ISBN: 0323158447

Download Introduction to Nonlinear Laser Spectroscopy Book in PDF, ePub and Kindle

Introduction to Nonlinear Laser Spectroscopy focuses on the principles of nonlinear laser spectroscopy. This book discusses the experimental techniques of nonlinear optics and spectroscopy. Comprised of seven chapters, this book starts with an overview of the stimulated Raman effect and coherent anti-Stokes Raman spectroscopy, which can be used in a varied way to generate radiation in the ultraviolet and vacuum-ultraviolet areas. This text then explains the simplest quantum-mechanical system consisting of an isolated entity with energy eigenstates