An Experimental Investigation 0f Heat Transfer In Three Dimensional And Separating Turbulent Boundary Layers PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Experimental Investigation 0f Heat Transfer In Three Dimensional And Separating Turbulent Boundary Layers PDF full book. Access full book title An Experimental Investigation 0f Heat Transfer In Three Dimensional And Separating Turbulent Boundary Layers.

An Experimental Investigation 0f Heat Transfer in Three-Dimensional and Separating Turbulent Boundary Layers

An Experimental Investigation 0f Heat Transfer in Three-Dimensional and Separating Turbulent Boundary Layers
Author:
Publisher:
Total Pages: 495
Release: 1996
Genre:
ISBN:

Download An Experimental Investigation 0f Heat Transfer in Three-Dimensional and Separating Turbulent Boundary Layers Book in PDF, ePub and Kindle

The turbulence structure of convective beat transfer was studied experimentally in complex three-dimensional and separating turbulent boundary layers. Three test cases whose fluid dynamics have been well documented were examined. In case 1, time- and spatially-resolved surface heat transfer was measured in the nose region of a wing-body junction formed by a wing and a flat plate. Both the wing and the endwall were heated and held at a constant uniform temperature 20 C above ambient temperature. Heat flux rates were increased up to a factor of 3 over the heat flux rates in the approach boundary layer. The rms of the heat flux fluctuations were as high as 25% of the mean heat flux in the vortex-dominated nose region. Away from the wing, upstream of the time-averaged vortex center, augmentation in the heat flux is due to increased turbulent mixing caused by large-scale unsteadiness of the vortex. Adjacent to the wing the augmentation in heat flux is due to a change in the mean velocity field. In case 2, simultaneous surface heat flux and temperature profiles were measured at 8 locations in the spatially-developing pressure-driven three-dimensional turbulent boundary layer upstream of a wing-body junction. Mean heat transfer was decreased 10% by three-dimensionality. The turbulent Prandtl number in the near-wall region of logarithmic temperature variation was approximately 0.9 at all measurement locations in the three-dimensional boundary layer. Profiles of the skewness factor of temperature fluctuations and conditionally-averaged temperature signals during a sweep/ejection event suggest that the strength of ejections of hot fluid from the near-wall region are decreased by three-dimensionality.


Three-dimensional Shock Wave-turbulent Boundary Layer Interactions at Mach 6

Three-dimensional Shock Wave-turbulent Boundary Layer Interactions at Mach 6
Author: C. Herbert Law
Publisher:
Total Pages: 52
Release: 1975
Genre: Aerodynamic heating
ISBN:

Download Three-dimensional Shock Wave-turbulent Boundary Layer Interactions at Mach 6 Book in PDF, ePub and Kindle

Experimental results of an investigation of the three-dimensional interaction between a skewed shock wave and a turbulent boundary layer are presented. Surface pressure and heat transfer distributions and oil flow photographs were obtained at a freestream Mach number of 5.85 and two Reynolds numbers of ten and twenty million per foot. The model configuration consisted of a shock generator mounted perpendicularly to a flat plate. The shock generator leading edge was sharp and nonswept and intersected the flat plate surface about 8.5 inches downstream of the flat plate leading edge. The shock generator surface was 7.55 inches long and 3 inches high and its angle to the freestream flow was adjusted from 4 to 20 degrees. The generated shock waves were of sufficient strength to produce turbulent boundary layer separation on the flat plate surface.


Three Dimensional Interactions in High Speed Boundary Layer Flows

Three Dimensional Interactions in High Speed Boundary Layer Flows
Author: George R. Inger
Publisher:
Total Pages: 37
Release: 1985
Genre:
ISBN:

Download Three Dimensional Interactions in High Speed Boundary Layer Flows Book in PDF, ePub and Kindle

The objective of this research is the basic theoretical investigation of three-dimensional pressure, skin friction, and heat transfer disturbances in both laminar and turbulent boundary layer flows including viscous-inviscid interaction effects, separation, and reattachment. A sound understanding of these phenomena is required in modern aerodynamic design analyses of high-speed flight vehicles. The primary emphasis in these studies has been to seek a basic physical understanding of the underlying fluid behavior by means of analytically-oriented methods; in this way, the results can be used to guide and interpret concurrent experimental and computationally-oriented investigations. This inquiry has focused on two parallel paths of investigation: three-dimensional, viscous-inviscid interaction phenomena within turbulent boundary layers in supersonic flow due to impinging swept shock and/or 3-D surface deflections, and streamwise vortex-disturbance mechanisms within laminar or turbulent boundary layers that are either separated or attached.


Applied Mechanics Reviews

Applied Mechanics Reviews
Author:
Publisher:
Total Pages: 700
Release: 1968
Genre: Mechanics, Applied
ISBN:

Download Applied Mechanics Reviews Book in PDF, ePub and Kindle


Turbulent Flows

Turbulent Flows
Author: Jean Piquet
Publisher: Springer Science & Business Media
Total Pages: 778
Release: 2001-03-26
Genre: Technology & Engineering
ISBN: 9783540654117

Download Turbulent Flows Book in PDF, ePub and Kindle

obtained are still severely limited to low Reynolds numbers (about only one decade better than direct numerical simulations), and the interpretation of such calculations for complex, curved geometries is still unclear. It is evident that a lot of work (and a very significant increase in available computing power) is required before such methods can be adopted in daily's engineering practice. I hope to l"Cport on all these topics in a near future. The book is divided into six chapters, each· chapter in subchapters, sections and subsections. The first part is introduced by Chapter 1 which summarizes the equations of fluid mechanies, it is developed in C~apters 2 to 4 devoted to the construction of turbulence models. What has been called "engineering methods" is considered in Chapter 2 where the Reynolds averaged equations al"C established and the closure problem studied (§1-3). A first detailed study of homogeneous turbulent flows follows (§4). It includes a review of available experimental data and their modeling. The eddy viscosity concept is analyzed in §5 with the l"Csulting ~alar-transport equation models such as the famous K-e model. Reynolds stl"Css models (Chapter 4) require a preliminary consideration of two-point turbulence concepts which are developed in Chapter 3 devoted to homogeneous turbulence. We review the two-point moments of velocity fields and their spectral transforms (§ 1), their general dynamics (§2) with the particular case of homogeneous, isotropie turbulence (§3) whel"C the so-called Kolmogorov's assumptions are discussed at length.