An Analytical Study Of T 38 Drag Reduction In Tight Formation Flight PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Analytical Study Of T 38 Drag Reduction In Tight Formation Flight PDF full book. Access full book title An Analytical Study Of T 38 Drag Reduction In Tight Formation Flight.

An Analytical Study of T-38 Drag Reduction in Tight Formation Flight

An Analytical Study of T-38 Drag Reduction in Tight Formation Flight
Author: Eugene H. Wagner
Publisher:
Total Pages: 122
Release: 2002-03-01
Genre: Drag (Aerodynamics)
ISBN: 9781423512134

Download An Analytical Study of T-38 Drag Reduction in Tight Formation Flight Book in PDF, ePub and Kindle

This thesis explores the benefits of flying in a tight formation, mimicking the natural behavior of migratory birds such as geese. The first phase of the research was to determine an optimal position for the wingman of a tight formation flight of T-38 Talon aircraft using the HASC95 vortex lattice code. A second wingman was then added to determine the benefit derived by increasing formation size. The second wingman was predicted to derive an even greater induced drag benefit than the first wingman for T-38s operating at Mach 0.54 at a 10,000-foot altitude. The predicted values were 17.5% savings for the second wingman versus 15% for the first wingman. The flight test phase flew two and three-ship formations to validate the computational work. The results of the two-ship flight tests showed with 80% confidence that the wingman saved fuel in the predicted optimal position (86% wingspan lateral spacing). This position yielded actual fuel savings of 8.8% 5.0% versus the predicted 15%. The other lateral positions did not show a statistically significant fuel savings. The flight test team felt that the three-ship formation data was inconclusive due to the difficulty of trying to fly a stable position as the third aircraft in the formation without station-keeping ability.


An Analytical Study of T-38 Drag Reduction in Tight Formation Flight

An Analytical Study of T-38 Drag Reduction in Tight Formation Flight
Author:
Publisher:
Total Pages: 122
Release: 2002
Genre:
ISBN:

Download An Analytical Study of T-38 Drag Reduction in Tight Formation Flight Book in PDF, ePub and Kindle

This thesis explores the benefits of flying in a tight formation, mimicking the natural behavior of migratory birds such as geese. The first phase of the research was to determine an optimal position for the wingman of a tight formation flight of T-38 Talon aircraft using the HASC95 vortex lattice code. A second wingman was then added to determine the benefit derived by increasing formation size. The second wingman was predicted to derive an even greater induced drag benefit than the first wingman for T-38s operating at Mach 0.54 at a 10,000-foot altitude. The predicted values were 17.5% savings for the second wingman versus 15% for the first wingman. The flight test phase flew two and three-ship formations to validate the computational work. The results of the two-ship flight tests showed with 80% confidence that the wingman saved fuel in the predicted optimal position (86% wingspan lateral spacing). This position yielded actual fuel savings of 8.8% 5.0% versus the predicted 15%. The other lateral positions did not show a statistically significant fuel savings. The flight test team felt that the three-ship formation data was inconclusive due to the difficulty of trying to fly a stable position as the third aircraft in the formation without station-keeping ability.


Computational Aerodynamic Modeling of Aerospace Vehicles

Computational Aerodynamic Modeling of Aerospace Vehicles
Author: Mehdi Ghoreyshi
Publisher: MDPI
Total Pages: 294
Release: 2019-03-08
Genre: Technology & Engineering
ISBN: 3038976105

Download Computational Aerodynamic Modeling of Aerospace Vehicles Book in PDF, ePub and Kindle

Currently, the use of computational fluid dynamics (CFD) solutions is considered as the state-of-the-art in the modeling of unsteady nonlinear flow physics and offers an early and improved understanding of air vehicle aerodynamics and stability and control characteristics. This Special Issue covers recent computational efforts on simulation of aerospace vehicles including fighter aircraft, rotorcraft, propeller driven vehicles, unmanned vehicle, projectiles, and air drop configurations. The complex flow physics of these configurations pose significant challenges in CFD modeling. Some of these challenges include prediction of vortical flows and shock waves, rapid maneuvering aircraft with fast moving control surfaces, and interactions between propellers and wing, fluid and structure, boundary layer and shock waves. Additional topic of interest in this Special Issue is the use of CFD tools in aircraft design and flight mechanics. The problem with these applications is the computational cost involved, particularly if this is viewed as a brute-force calculation of vehicle’s aerodynamics through its flight envelope. To make progress in routinely using of CFD in aircraft design, methods based on sampling, model updating and system identification should be considered.


Over 40 Publications / Studies Combined: UAS / UAV / Drone Swarm Technology Research

Over 40 Publications / Studies Combined: UAS / UAV / Drone Swarm Technology Research
Author:
Publisher: Jeffrey Frank Jones
Total Pages: 3840
Release:
Genre:
ISBN:

Download Over 40 Publications / Studies Combined: UAS / UAV / Drone Swarm Technology Research Book in PDF, ePub and Kindle

Over 3,800 total pages ... Just a sample of the studies / publications included: Drone Swarms Terrorist and Insurgent Unmanned Aerial Vehicles: Use, Potentials, and Military Implications Countering A2/AD with Swarming Stunning Swarms: An Airpower Alternative to Collateral Damage Ideal Directed-Energy System To Defeat Small Unmanned Aircraft System Swarms Break the Kill Chain, not the Budget: How to Avoid U.S. Strategic Retrenchment Gyges Effect: An Ethical Critique of Lethal Remotely Piloted Aircraft Human Robotic Swarm Interaction Using an Artificial Physics Approach Swarming UAS II Swarming Unmanned Aircraft Systems Communication Free Robot Swarming UAV Swarm Attack: Protection System Alternatives for Destroyers Confidential and Authenticated Communications in a Large Fixed-Wing UAV Swarm UAV Swarm Behavior Modeling for Early Exposure of Failure Modes Optimized Landing of Autonomous Unmanned Aerial Vehicle Swarms Mini, Micro, and Swarming Unmanned Aerial Vehicles: A Baseline Study UAV Swarm Operational Risk Assessment System SmartSwarms: Distributed UAVs that Think Command and Control Autonomous UxV's UAV Swarm Tactics: An Agent-Based Simulation and Markov Process Analysis A Novel Communications Protocol Using Geographic Routing for Swarming UAVs Performing a Search Mission Accelerating the Kill Chain via Future Unmanned Aircraft Evolution of Control Programs for a Swarm of Autonomous Unmanned Aerial Vehicles AFIT UAV Swarm Mission Planning and Simulation System A Genetic Algorithm for UAV Routing Integrated with a Parallel Swarm Simulation Applying Cooperative Localization to Swarm UAVS Using an Extended Kalman Filter A Secure Group Communication Architecture for a Swarm of Autonomous Unmanned Aerial Vehicles Braving the Swarm: Lowering Anticipated Group Bias in Integrated Fire/Police Units Facing Paramilitary Terrorism Distributed Beamforming in a Swarm UAV Network Integrating UAS Flocking Operations with Formation Drag Reduction Tracking with a Cooperatively Controlled Swarm of GMTI Equipped UAVS Using Agent-Based Modeling to Evaluate UAS Behaviors in a Target-Rich Environment Experimental Analysis of Integration of Tactical Unmanned Aerial Vehicles and Naval Special Warfare Operations Forces Target Acquisition Involving Multiple Unmanned Air Vehicles: Interfaces for Small Unmanned Air Systems (ISUS) Program Tools for the Conceptual Design and Engineering Analysis of Micro Air Vehicles Architectural Considerations for Single Operator Management of Multiple Unmanned Aerial Vehicles


Cathrine Zernichow

Cathrine Zernichow
Author:
Publisher:
Total Pages:
Release: 1998
Genre:
ISBN:

Download Cathrine Zernichow Book in PDF, ePub and Kindle


Introduction to Aircraft Flight Mechanics

Introduction to Aircraft Flight Mechanics
Author: Thomas R. Yechout
Publisher: AIAA
Total Pages: 666
Release: 2003
Genre: Aerodynamics
ISBN: 9781600860782

Download Introduction to Aircraft Flight Mechanics Book in PDF, ePub and Kindle

Based on a 15-year successful approach to teaching aircraft flight mechanics at the US Air Force Academy, this text explains the concepts and derivations of equations for aircraft flight mechanics. It covers aircraft performance, static stability, aircraft dynamics stability and feedback control.


Research and Technology Program Digest

Research and Technology Program Digest
Author: United States. National Aeronautics and Space Administration
Publisher:
Total Pages: 792
Release:
Genre:
ISBN:

Download Research and Technology Program Digest Book in PDF, ePub and Kindle