An Adaptive Discontinuous Galerkin Solver For Aerodynamic Flows PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download An Adaptive Discontinuous Galerkin Solver For Aerodynamic Flows PDF full book. Access full book title An Adaptive Discontinuous Galerkin Solver For Aerodynamic Flows.

An Adaptive Discontinuous Galerkin Solver for Aerodynamic Flows

An Adaptive Discontinuous Galerkin Solver for Aerodynamic Flows
Author: Nicholas K. Burgess
Publisher:
Total Pages: 325
Release: 2011
Genre: Aerodynamics
ISBN: 9781267110817

Download An Adaptive Discontinuous Galerkin Solver for Aerodynamic Flows Book in PDF, ePub and Kindle

This work considers the accuracy, efficiency, and robustness of an unstructured high-order accurate discontinuous Galerkin (DG) solver for computational fluid dynamics (CFD). Recently, there has been a drive to reduce the discretization error of CFD simulations using high-order methods on unstructured grids. However, high-order methods are often criticized for lacking robustness and having high computational cost. The goal of this work is to investigate methods that enhance the robustness of high-order discontinuous Galerkin (DG) methods on unstructured meshes, while maintaining low computational cost and high accuracy of the numerical solutions. This work investigates robustness enhancement of high-order methods by examining effective non-linear solvers, shock capturing methods, turbulence model discretizations and adaptive refinement techniques. The goal is to develop an all encompassing solver that can simulate a large range of physical phenomena, where all aspects of the solver work together to achieve a robust, efficient and accurate solution strategy. The components and framework for a robust high-order accurate solver that is capable of solving viscous, Reynolds Averaged Navier-Stokes (RANS) and shocked flows is presented. In particular, this work discusses robust discretizations of the turbulence model equation used to close the RANS equations, as well as stable shock capturing strategies that are applicable across a wide range of discretization orders and applicable to very strong shock waves. Furthermore, refinement techniques are considered as both efficiency and robustness enhancement strategies. Additionally, efficient non-linear solvers based on multigrid and Krylov subspace methods are presented. The accuracy, efficiency, and robustness of the solver is demonstrated using a variety of challenging aerodynamic test problems, which include turbulent high-lift and viscous hypersonic flows. Adaptive mesh refinement was found to play a critical role in obtaining a robust and efficient high-order accurate flow solver. A goal-oriented error estimation technique has been developed to estimate the discretization error of simulation outputs. For high-order discretizations, it is shown that functional output error super-convergence can be obtained, provided the discretization satisfies a property known as dual consistency. The dual consistency of the DG methods developed in this work is shown via mathematical analysis and numerical experimentation. Goal-oriented error estimation is also used to drive an hp -adaptive mesh refinement strategy, where a combination of mesh or h -refinement, and order or p -enrichment, is employed based on the smoothness of the solution. The results demonstrate that the combination of goal-oriented error estimation and hp-adaptation yield superior accuracy, as well as enhanced robustness and efficiency for a variety of aerodynamic flows including flows with strong shock waves. This work demonstrates that DG discretizations can be the basis of an accurate, efficient, and robust CFD solver. Furthermore, enhancing the robustness of DG methods does not adversely impact the accuracy or efficiency of the solver for challenging and complex flow problems. In particular, when considering the computation of shocked flows, this work demonstrates that the available shock capturing techniques are sufficiently accurate and robust, particularly when used in conjunction with adaptive mesh refinement . This work also demonstrates that robust solutions of the Reynolds Averaged Navier-Stokes (RANS) and turbulence model equations can be obtained for complex and challenging aerodynamic flows. In this context, the most robust strategy was determined to be a low-order turbulence model discretization coupled to a high-order discretization of the RANS equations. Although RANS solutions using high-order accurate discretizations of the turbulence model were obtained, the behavior of current-day RANS turbulence models discretized to high-order was found to be problematic, leading to solver robustness issues. This suggests that future work is warranted in the area of turbulence model formulation for use with high-order discretizations. Alternately, the use of Large-Eddy Simulation (LES) subgrid scale models with high-order DG methods offers the potential to leverage the high accuracy of these methods for very high fidelity turbulent simulations. This thesis has developed the algorithmic improvements that will lay the foundation for the development of a three-dimensional high-order flow solution strategy that can be used as the basis for future LES simulations.


An Adaptive Variational Multiscale Method with Discontinuous Subscales for Aerodynamic Flows

An Adaptive Variational Multiscale Method with Discontinuous Subscales for Aerodynamic Flows
Author: Arthur Chan-wei Huang
Publisher:
Total Pages: 168
Release: 2020
Genre:
ISBN:

Download An Adaptive Variational Multiscale Method with Discontinuous Subscales for Aerodynamic Flows Book in PDF, ePub and Kindle

A promising methodology for accurate and efficient simulation of aerodynamic flows is output-based mesh adaptation, which optimizes a mesh to minimize the discretization error in an output of interest. The state of the art in output-based adaptation uses the discontinuous Galerkin (DG) method, which is computationally expensive due to its duplicated degrees of freedom. Existing continuous Galerkin (CG) methods require up to 20 times fewer degrees of freedom, but lack the combination of stability and adjoint consistency required for output-based adaptation. This thesis presents a novel high order continuous Galerkin method, which is both adjoint consistent and stable. The scheme, called Variational Multiscale with Discontinuous subscales (VMSD), models unresolved solution perturbations with a discontinuous representation. The solution discontinuities are then used to stabilize the problem using methods borrowed from discontinuous Galerkin methods. At the same time, the mathematical structure of the discretization allows for the elimination of additional degrees of freedom in a computationally efficient manner, so that the method has a linear system of the same size as a conventional CG discretization. Finally, because the scheme is adjoint consistent, accurate error estimates can be obtained for use in an output-based mesh adaptation process. In this work, the method is derived and its optimal properties demonstrated through analysis and numerical experiment. In particular, the thesis describes the integration of VMSD in a high order adaptive method, namely the Mesh Optimization via Error Sampling and Synthesis (MOESS) algorithm. Adaptive DG and VMSD are compared for 3D RANS simulations. The adaptive VMSD method is shown to produces solutions with the same drag error as the adaptive DG method, with a factor of 3-10 fewer globally coupled degrees of freedom, and an associated factor of three or more reduction in computation time.


ADIGMA – A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications

ADIGMA – A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications
Author: Norbert Kroll
Publisher: Springer Science & Business Media
Total Pages: 498
Release: 2010-09-18
Genre: Technology & Engineering
ISBN: 3642037070

Download ADIGMA – A European Initiative on the Development of Adaptive Higher-Order Variational Methods for Aerospace Applications Book in PDF, ePub and Kindle

This volume contains results gained from the EU-funded 6th Framework project ADIGMA (Adaptive Higher-order Variational Methods for Aerodynamic Applications in Industry). The goal of ADIGMA was the development and utilization of innovative adaptive higher-order methods for the compressible flow equations enabling reliable, mesh independent numerical solutions for large-scale aerodynamic applications in aircraft industry. The ADIGMA consortium was comprised of 22 organizations which included the main European aircraft manufacturers, the major European research establishments and several universities, all with well proven expertise in Computational Fluid Dynamics (CFD). The book presents an introduction to the project, exhibits partners’ methods and approaches and provides a critical assessment of the newly developed methods for industrial aerodynamic applications. The best numerical strategies for integration as major building blocks for the next generation of industrial flow solvers are identified.


Issues in Aerospace and Defense Research and Application: 2013 Edition

Issues in Aerospace and Defense Research and Application: 2013 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 607
Release: 2013-05-01
Genre: Technology & Engineering
ISBN: 1490108394

Download Issues in Aerospace and Defense Research and Application: 2013 Edition Book in PDF, ePub and Kindle

Issues in Aerospace and Defense Research and Application: 2013 Edition is a ScholarlyEditions™ book that delivers timely, authoritative, and comprehensive information about Aerospace Research. The editors have built Issues in Aerospace and Defense Research and Application: 2013 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Aerospace Research in this book to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Aerospace and Defense Research and Application: 2013 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Error Control, Adaptive Discretizations, and Applications, Part 1

Error Control, Adaptive Discretizations, and Applications, Part 1
Author:
Publisher: Elsevier
Total Pages: 446
Release: 2024-06-29
Genre: Science
ISBN: 0443294496

Download Error Control, Adaptive Discretizations, and Applications, Part 1 Book in PDF, ePub and Kindle

Error Control, Adaptive Discretizations, and Applications, Volume 58, Part One highlights new advances in the field, with this new volume presenting interesting chapters written by an international board of authors. Chapters in this release cover hp adaptive Discontinuous Galerkin strategies driven by a posteriori error estimation with application to aeronautical flow problems, An anisotropic mesh adaptation method based on gradient recovery and optimal shape elements, and Model reduction techniques for parametrized nonlinear partial differential equations. Covers multi-scale modeling Includes updates on data-driven modeling Presents the latest information on large deformations of multi-scale materials


Discontinuous Galerkin Method

Discontinuous Galerkin Method
Author: Vít Dolejší
Publisher: Springer
Total Pages: 575
Release: 2015-07-17
Genre: Mathematics
ISBN: 3319192671

Download Discontinuous Galerkin Method Book in PDF, ePub and Kindle

The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.


Efficient High-Order Discretizations for Computational Fluid Dynamics

Efficient High-Order Discretizations for Computational Fluid Dynamics
Author: Martin Kronbichler
Publisher: Springer Nature
Total Pages: 314
Release: 2021-01-04
Genre: Technology & Engineering
ISBN: 3030606104

Download Efficient High-Order Discretizations for Computational Fluid Dynamics Book in PDF, ePub and Kindle

The book introduces modern high-order methods for computational fluid dynamics. As compared to low order finite volumes predominant in today's production codes, higher order discretizations significantly reduce dispersion errors, the main source of error in long-time simulations of flow at higher Reynolds numbers. A major goal of this book is to teach the basics of the discontinuous Galerkin (DG) method in terms of its finite volume and finite element ingredients. It also discusses the computational efficiency of high-order methods versus state-of-the-art low order methods in the finite difference context, given that accuracy requirements in engineering are often not overly strict. The book mainly addresses researchers and doctoral students in engineering, applied mathematics, physics and high-performance computing with a strong interest in the interdisciplinary aspects of computational fluid dynamics. It is also well-suited for practicing computational engineers who would like to gain an overview of discontinuous Galerkin methods, modern algorithmic realizations, and high-performance implementations.


Techniques for High-order Adaptive Discontinuous Galerkin Discretizations in Fluid Dynamics

Techniques for High-order Adaptive Discontinuous Galerkin Discretizations in Fluid Dynamics
Author: Li Wang
Publisher:
Total Pages: 178
Release: 2009
Genre: Fluid dynamics
ISBN: 9781109532913

Download Techniques for High-order Adaptive Discontinuous Galerkin Discretizations in Fluid Dynamics Book in PDF, ePub and Kindle

The use of high-order discontinuous Galerkin (DG) discretizations has become more widespread over the last decade for solving convection-dominated computational fluid dynamics problems. The appeal of these methods relates to their favorable asymptotic accuracy properties, combined with compact stencils and favorable scalability properties on parallel computing architectures. This work covers advances in several areas of high-order DG discretizations, including the development of implicit solvers, discrete adjoint methods for shape optimization, and output-based error estimation and mesh and time-step adaptation. For time-dependent problems, high-order implicit time-integration schemes are considered exclusively to avoid the stability restrictions of explicit methods, with particular emphasis on balancing spatial and temporal accuracy of the overall approach. In order to make the high-order schemes competitive, efficient solution techniques consisting of a p -multigrid approach driven by element Jacobi smoothers are investigated and developed to accelerate convergence of the non-linear systems, in which the results demonstrate h independent convergence rates, while remaining relatively insensitive to time-step sizes. A framework based on discrete adjoint sensitivity analysis has also been developed for applications in shape optimization and goal-oriented error estimation. An adaptive discontinuous Galerkin algorithm driven by an adjoint-based error estimation procedure has been developed, which incorporates both h-, p- and combined hp -adaptive schemes, for producing accurate simulations at optimal cost in the objective functional of interest. Current results show superior performance of these adaptive schemes over uniform mesh refinement methods, as well as the potential of the hp refinement approach to capture strong shocks without limiters. Finally, the adjoint-based error estimation strategy is successfully extended to unsteady flow problems, where the time-dependent flow solution is solved in a forward manner in time but the corresponding unsteady adjoint solution is evaluated as a backward time integration. Results demonstrate that this methodology provides accurate global temporal error prediction, and may be employed to drive an adaptive time-step refinement strategy for improving the accuracy of specified time-dependent functionals of interest.


An Adaptive High Order Reynolds-averaged Navier-Stokes Solver with Transition Prediction

An Adaptive High Order Reynolds-averaged Navier-Stokes Solver with Transition Prediction
Author: David Moro-Ludeña
Publisher:
Total Pages: 239
Release: 2015
Genre:
ISBN:

Download An Adaptive High Order Reynolds-averaged Navier-Stokes Solver with Transition Prediction Book in PDF, ePub and Kindle

The use of simulation techniques in applied aerodynamics has increased dramatically in the last three decades fostered by the growth in computational power. However, the state of the art discretization in industrial solvers remains nominally second order accurate, which makes them unfeasible to resolve multi-scale phenomena such as turbulence or acoustics, and limits their efficiency in terms of the error per degree of freedom. In recent years, the CFD community has put significant effort into the development of high order methods for fluid dynamics, with the goal of overcoming these barriers. This dissertation focuses on the application of high order hybridizable discontinuous Galerkin schemes to solve the equations that govern compressible turbulent flows. In particular, this thesis describes a novel methodology to adapt the boundary layer mesh to the solution "on the fly", based on a measure of the boundary layer thickness that drives the position of the nodes in the mesh, without changing its topology. The proposed algorithm produces accurate solutions with a reduced number of degrees of freedom, by leveraging the combination of mesh adaptivity with the high order of convergence of the discretization. In addition, the active tracking of the boundary layer reduces the nonlinear stiffness and improves the robustness of the numerical solution. A new shock capturing technique based on the addition of artificial viscosity is developed to handle shocks. The model is driven by a non-dimensional form of the divergence of the velocity, designed so that sub-cell shock resolution is achieved when a high order discretization is used, independently of the element size. The approach is extended to include the effect of transition to turbulence using an envelope eN method. This takes advantage of the structure of the mesh and requires the solution of a surface PDE for the transition criterion, which is discretized using a novel surface hybridizable discontinuous Galerkin scheme. The resulting method can simulate transition to turbulence in attached and separated flows, and can also accommodate long-scale unsteadiness in which the transition location evolves in time.