Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Non Volatile Memory And Circuits For Transparent Electronics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Non Volatile Memory And Circuits For Transparent Electronics PDF full book. Access full book title Amorphous Indium Gallium Zinc Oxide Thin Film Transistors Non Volatile Memory And Circuits For Transparent Electronics.

Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors, Non-volatile Memory and Circuits for Transparent Electronics

Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors, Non-volatile Memory and Circuits for Transparent Electronics
Author:
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

Download Amorphous Indium Gallium Zinc Oxide Thin-Film Transistors, Non-volatile Memory and Circuits for Transparent Electronics Book in PDF, ePub and Kindle

The ability to make electronic devices, that are transparent to visible and near infrared wavelength, is a relatively new field of research in the development of the next generation of optoelectronic devices. A new class of inorganic thin-film transistor (TFT) channel material based on amorphous oxide semiconductors, that show high carrier mobility and high visual transparency, is being researched actively. The purpose of this dissertation is to develop amorphous oxide semiconductors by pulsed laser deposition, show their suitability for TFT applications and demonstrate other classes of devices such as non-volatile memory elements and integrated circuits such as ring oscillators and active matrix pixel elements. Indium gallium zinc oxide (IGZO) is discussed extensively in this dissertation. The influence of several deposition parameters is explored and oxygen partial pressure during deposition is found to have a profound effect on the electrical and optical characteristics of the IGZO films. By optimizing the deposition conditions, IGZO TFTs exhibit excellent electrical properties, even without any intentional annealing. This attribute along with the amorphous nature of the material also makes IGZO TFTs compatible with flexible substrates opening up various applications. IGZO TFTs with saturation field effect mobility of 12 â€" 16 cm2 V-1 s-1 and subthreshold voltage swing of 200 mV decade-1 have been fabricated. By varying the oxygen partial pressure during deposition the conductivity of the channel was controlled to give a low off-state current ~ 10 pA and a drain current on/off ratio of 1 x108. Additionally, the effects of the oxygen partial pressure and the thickness of the semiconductor layer, the choice of the gate dielectric material and the device channel length on the electrical characteristics of the TFTs are explored. To evaluate IGZO TFT electrical stability, constant voltage bias stress measurements were carried out. The observed logarithmic depende.


Amorphous Oxide Semiconductors

Amorphous Oxide Semiconductors
Author: Hideo Hosono
Publisher: John Wiley & Sons
Total Pages: 644
Release: 2022-05-31
Genre: Technology & Engineering
ISBN: 1119715571

Download Amorphous Oxide Semiconductors Book in PDF, ePub and Kindle

AMORPHOUS OXIDE SEMICONDUCTORS A singular resource on amorphous oxide semiconductors edited by a world-recognized pioneer in the field In Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory, the Editors deliver a comprehensive account of the current status of—and latest developments in—transparent oxide semiconductor technology. With contributions from leading international researchers and exponents in the field, this edited volume covers physical fundamentals, thin-film transistor applications, processing, circuits and device simulation, display and memory applications, and new materials relevant to amorphous oxide semiconductors. The book makes extensive use of structural diagrams of materials, energy level and energy band diagrams, device structure illustrations, and graphs of device transfer characteristics, photographs and micrographs to help illustrate the concepts discussed within. It also includes: A thorough introduction to amorphous oxide semiconductors, including discussions of commercial demand, common challenges faced during their manufacture, and materials design Comprehensive explorations of the electronic structure of amorphous oxide semiconductors, structural randomness, doping limits, and defects Practical discussions of amorphous oxide semiconductor processing, including oxide materials and interfaces for application and solution-process metal oxide semiconductors for flexible electronics In-depth examinations of thin film transistors (TFTs), including the trade-off relationship between mobility and reliability in oxide TFTs Perfect for practicing scientists, engineers, and device technologists working with transparent semiconductor systems, Amorphous Oxide Semiconductors: IGZO and Related Materials for Display and Memory will also earn a place in the libraries of students studying oxides and other non-classical and innovative semiconductor devices. WILEY SID Series in Display Technology Series Editor: Ian Sage, Abelian Services, Malvern, UK The Society for Information Display (SID) is an international society which has the aim of encouraging the development of all aspects of the field of information display. Complementary to the aims of the society, the Wiley-SID series is intended to explain the latest developments in information display technology at a professional level. The broad scope of the series addresses all facets of information displays from technical aspects through systems and prototypes to standards and ergonomics.


Development of Indium Gallium Zinc Oxide Thin Film Transistors on a Softening Shape Memory Polymer for Implantable Neural Interfaces Devices

Development of Indium Gallium Zinc Oxide Thin Film Transistors on a Softening Shape Memory Polymer for Implantable Neural Interfaces Devices
Author: Ovidio Rodriguez Lopez
Publisher:
Total Pages:
Release: 2019
Genre: Brain-computer interfaces
ISBN:

Download Development of Indium Gallium Zinc Oxide Thin Film Transistors on a Softening Shape Memory Polymer for Implantable Neural Interfaces Devices Book in PDF, ePub and Kindle

The continuous improvement in electronic active devices has led to several innovations in semiconductor materials, novel deposition methods, and improved microfabrication techniques. In the same way, the implementation of thin-film technology has revolutionized the semiconductor industry. For instance, the field of flexible electronics has utilized novel thin-film electronics components for the fabrication flexible displays, radio frequency identification (RF-ID) tags, and solar cells. Moreover, flexible electronics have sparked a great interest in the field of bioelectronics, for the fabrication of high-spatial-resolution implantable devices for neural interfaces. This incorporation of thin-film technology can potentially enable stimulation and recording the nervous system activity by utilizing novel, minimally invasive, conformal devices. To achieve this, flexible electronics circuits must possess high performance, reliability, and stability, as well as be resilient to mechanical stress and human body conditions, are some of the requirements that flexible electronics must meet for the realization of these devices. Furthermore, the choice of substrates is also critical since it directly affects final properties of the active devices. Substrates, which are mechanically and biologically compliant, are preferred. For this reason, novel, softening materials like thiol-ene polymers are considered in this research. This work centers on the development of Indium-Gallium-Zinc-Oxide (IGZO) thin-film transistors (TFT) using the thiol-ene softening polymer as substrate. Functional IGZO-TFTs were fabricated on top of 50 μm of a thiol-ene/acrylate shape memory polymer (SMP) and electrically characterized. Hafnium oxide (HfO2) deposited at 100°C by atomic layer deposition was used as gate dielectric, and gold (Au) as contacts. The devices were exposed to oxygen, vacuum and forming gas (FG) environments at 250°C to analyze the effects of these atmospheres on the IGZO-TFTs. Improvement in the electrical performance was noticed after the exposure to FG with a significant change in mobility from 0.01 to 30 cm2 V-1s-1, and a reduction in the threshold voltage shift (∆Vth), which it is translated into an increase on stability. Vacuum and oxygen effects were, also analyzed and compared. Furthermore, a time-dependent dielectric breakdown (TDDB) analysis was performed to define the lifetime of the transistors, where a prediction of 10 years at an operational range below 5 V was obtained. Additionally, the TFTs were encapsulated with 5 μm of SMP and exposed to simulated in vivo conditions. Up to 104 bending cycles were performed to the IGZO-TFTs with a bending radius of 5 mm and then, soaked into PBS solution at 37°C for one week to determine the resilience and reliability of the devices. The encapsulated IGZO-TFTs survived to the PBS environment and demonstrated resilience to mechanical deformation with small changes in the electronic properties. The results provided in this research contribute to the development of complex circuitry based on thin-film devices using mechanically adaptive polymers as a flexible substrate and enable the production of multichannel implantable bioelectronics devices.


Passivation of Amorphous Indium-gallium-zinc Oxide (IGZO) Thin-film Transistors

Passivation of Amorphous Indium-gallium-zinc Oxide (IGZO) Thin-film Transistors
Author: Nathaniel Walsh
Publisher:
Total Pages: 90
Release: 2014
Genre: Integrated circuits
ISBN:

Download Passivation of Amorphous Indium-gallium-zinc Oxide (IGZO) Thin-film Transistors Book in PDF, ePub and Kindle

"Thin-film transistors (TFTs) with channel materials made out of hydrogenated amorphous silicon (a-Si:H) and polycrystalline silicon (poly-Si) have been extensively investigated. Amorphous silicon continues to dominate the large-format display technology; however newer technologies demand a higher performance TFT which a-Si:H cannot deliver due to its low electron mobility, μn ~ 1 cm2/V*s. Metal-oxide materials such as Indium-Gallium-Zinc Oxide (IGZO) have demonstrated semiconductor properties, and are candidates to replace a Si:H for TFT backplane technologies. This work involves the fabrication and characterization of TFTs utilizing a-IGZO deposited by RF sputtering. An overview of the process details and results from recently fabricated IGZO TFTs following designed experiments are presented, followed by analysis of electrical results. The investigated process variables were the thickness of the IGZO channel material, passivation layer material, and annealing conditions. The use of electron-beam deposited Aluminum oxide (alumina or Al2O3) as back-channel passivation material resulted in improved device stability; however ID VG transfer characteristics revealed the influence of back-channel interface traps. Results indicate that an interaction effect between the annealing condition (time/temperature) and the IGZO thickness on the electrical behavior of alumina-passivated devices may be significant. A device model implementing fixed charge and donor-like interface traps that are consistent with oxygen vacancies (OV) resulted in a reasonable match to measured characteristics. Modified annealing conditions have resulted in a reduction of back-channel interface traps, with levels comparable to devices fabricated without the addition of passivation material."--Abstract.


Amorphous Metal Oxide Semiconductor Thin Film Transistors for Printed Electronics

Amorphous Metal Oxide Semiconductor Thin Film Transistors for Printed Electronics
Author: Mustafa Mohammad Yousef
Publisher:
Total Pages: 55
Release: 2018
Genre:
ISBN:

Download Amorphous Metal Oxide Semiconductor Thin Film Transistors for Printed Electronics Book in PDF, ePub and Kindle

There is an acute market need for solution-processable semiconductor inks that can form the essential components of the printed analog and digital circuits. Currently, the industry is migrating beyond simply printing conductive metals for interconnects and embracing higher integration by printing transistors directly on the same substrate. This thesis focuses on investigating solution-processed amorphous indium gallium zinc oxide (IGZO) as a semiconducting channel layer of a field-effect transistor to enable low-cost, large-area printed electronics that are physically flexible and optically transparent. Specifically, we aim to achieve field-effect mobility exceeding 1 cm2/Vs, to overcome the limits faced in existing amorphous silicon and emerging organic transistor technologies, through optimizing IGZO ink and studying various thin-film processing conditions. Device approach using solution-processed, high-K aluminum oxide dielectric layer has also been examined in this study. In addition, the effect of low-temperature UV-assisted annealing has been studied which allow the fabrication to be compatible with plastic substrates.