Advances In Iterative Methods For Nonlinear Equations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Advances In Iterative Methods For Nonlinear Equations PDF full book. Access full book title Advances In Iterative Methods For Nonlinear Equations.

Advances in Iterative Methods for Nonlinear Equations

Advances in Iterative Methods for Nonlinear Equations
Author: Sergio Amat
Publisher: Springer
Total Pages: 286
Release: 2016-09-27
Genre: Mathematics
ISBN: 331939228X

Download Advances in Iterative Methods for Nonlinear Equations Book in PDF, ePub and Kindle

This book focuses on the approximation of nonlinear equations using iterative methods. Nine contributions are presented on the construction and analysis of these methods, the coverage encompassing convergence, efficiency, robustness, dynamics, and applications. Many problems are stated in the form of nonlinear equations, using mathematical modeling. In particular, a wide range of problems in Applied Mathematics and in Engineering can be solved by finding the solutions to these equations. The book reveals the importance of studying convergence aspects in iterative methods and shows that selection of the most efficient and robust iterative method for a given problem is crucial to guaranteeing a good approximation. A number of sample criteria for selecting the optimal method are presented, including those regarding the order of convergence, the computational cost, and the stability, including the dynamics. This book will appeal to researchers whose field of interest is related to nonlinear problems and equations, and their approximation.


Iterative Methods for Linear and Nonlinear Equations

Iterative Methods for Linear and Nonlinear Equations
Author: C. T. Kelley
Publisher: SIAM
Total Pages: 179
Release: 1995-01-01
Genre: Mathematics
ISBN: 9781611970944

Download Iterative Methods for Linear and Nonlinear Equations Book in PDF, ePub and Kindle

Linear and nonlinear systems of equations are the basis for many, if not most, of the models of phenomena in science and engineering, and their efficient numerical solution is critical to progress in these areas. This is the first book to be published on nonlinear equations since the mid-1980s. Although it stresses recent developments in this area, such as Newton-Krylov methods, considerable material on linear equations has been incorporated. This book focuses on a small number of methods and treats them in depth. The author provides a complete analysis of the conjugate gradient and generalized minimum residual iterations as well as recent advances including Newton-Krylov methods, incorporation of inexactness and noise into the analysis, new proofs and implementations of Broyden's method, and globalization of inexact Newton methods. Examples, methods, and algorithmic choices are based on applications to infinite dimensional problems such as partial differential equations and integral equations. The analysis and proof techniques are constructed with the infinite dimensional setting in mind and the computational examples and exercises are based on the MATLAB environment.


Iterative Methods for Solving Nonlinear Equations and Systems

Iterative Methods for Solving Nonlinear Equations and Systems
Author: Juan R. Torregrosa
Publisher: MDPI
Total Pages: 494
Release: 2019-12-06
Genre: Mathematics
ISBN: 3039219405

Download Iterative Methods for Solving Nonlinear Equations and Systems Book in PDF, ePub and Kindle

Solving nonlinear equations in Banach spaces (real or complex nonlinear equations, nonlinear systems, and nonlinear matrix equations, among others), is a non-trivial task that involves many areas of science and technology. Usually the solution is not directly affordable and require an approach using iterative algorithms. This Special Issue focuses mainly on the design, analysis of convergence, and stability of new schemes for solving nonlinear problems and their application to practical problems. Included papers study the following topics: Methods for finding simple or multiple roots either with or without derivatives, iterative methods for approximating different generalized inverses, real or complex dynamics associated to the rational functions resulting from the application of an iterative method on a polynomial. Additionally, the analysis of the convergence has been carried out by means of different sufficient conditions assuring the local, semilocal, or global convergence. This Special issue has allowed us to present the latest research results in the area of iterative processes for solving nonlinear equations as well as systems and matrix equations. In addition to the theoretical papers, several manuscripts on signal processing, nonlinear integral equations, or partial differential equations, reveal the connection between iterative methods and other branches of science and engineering.


Solving Nonlinear Equations with Iterative Methods

Solving Nonlinear Equations with Iterative Methods
Author: C. T. Kelley
Publisher: SIAM
Total Pages: 201
Release:
Genre: Mathematics
ISBN: 1611977274

Download Solving Nonlinear Equations with Iterative Methods Book in PDF, ePub and Kindle

This user-oriented guide describes state-of-the-art methods for nonlinear equations and shows, via algorithms in pseudocode and Julia with several examples, how to choose an appropriate iterative method for a given problem and write an efficient solver or apply one written by others. A sequel to the author’s Solving Nonlinear Equations with Newton’s Methods (SIAM, 2003), this book contains new material on pseudo-transient continuation, mixed-precision solvers, and Anderson acceleration. It is supported by a Julia package and a suite of Jupyter notebooks and includes examples of nonlinear problems from many disciplines. This book is will be useful to researchers who solve nonlinear equations, students in numerical analysis, and the Julia community.


Solving Nonlinear Equations with Newton's Method

Solving Nonlinear Equations with Newton's Method
Author: C. T. Kelley
Publisher: SIAM
Total Pages: 117
Release: 2003-01-01
Genre: Mathematics
ISBN: 9780898718898

Download Solving Nonlinear Equations with Newton's Method Book in PDF, ePub and Kindle

This book on Newton's method is a user-oriented guide to algorithms and implementation. In just over 100 pages, it shows, via algorithms in pseudocode, in MATLAB, and with several examples, how one can choose an appropriate Newton-type method for a given problem, diagnose problems, and write an efficient solver or apply one written by others. It contains trouble-shooting guides to the major algorithms, their most common failure modes, and the likely causes of failure. It also includes many worked-out examples (available on the SIAM website) in pseudocode and a collection of MATLAB codes, allowing readers to experiment with the algorithms easily and implement them in other languages.


Iterative Methods and Their Dynamics with Applications

Iterative Methods and Their Dynamics with Applications
Author: Ioannis Konstantinos Argyros
Publisher: CRC Press
Total Pages: 366
Release: 2017-07-12
Genre: Mathematics
ISBN: 1498763626

Download Iterative Methods and Their Dynamics with Applications Book in PDF, ePub and Kindle

Iterative processes are the tools used to generate sequences approximating solutions of equations describing real life problems. Intended for researchers in computational sciences and as a reference book for advanced computational method in nonlinear analysis, this book is a collection of the recent results on the convergence analysis of numerical algorithms in both finite-dimensional and infinite-dimensional spaces and presents several applications and connections with fixed point theory. It contains an abundant and updated bibliography and provides comparisons between various investigations made in recent years in the field of computational nonlinear analysis. The book also provides recent advancements in the study of iterative procedures and can be used as a source to obtain the proper method to use in order to solve a problem. The book assumes a basic background in Mathematical Statistics, Linear Algebra and Numerical Analysis and may be used as a self-study reference or as a supplementary text for an advanced course in Biosciences or Applied Sciences. Moreover, the newest techniques used to study the dynamics of iterative methods are described and used in the book and they are compared with the classical ones.


Iterative Solution of Nonlinear Equations in Several Variables

Iterative Solution of Nonlinear Equations in Several Variables
Author: J. M. Ortega
Publisher: SIAM
Total Pages: 598
Release: 1970-01-01
Genre: Mathematics
ISBN: 9780898719468

Download Iterative Solution of Nonlinear Equations in Several Variables Book in PDF, ePub and Kindle

Iterative Solution of Nonlinear Equations in Several Variables provides a survey of the theoretical results on systems of nonlinear equations in finite dimension and the major iterative methods for their computational solution. Originally published in 1970, it offers a research-level presentation of the principal results known at that time.


Iterative Methods for Sparse Linear Systems

Iterative Methods for Sparse Linear Systems
Author: Yousef Saad
Publisher: SIAM
Total Pages: 537
Release: 2003-04-01
Genre: Mathematics
ISBN: 0898715342

Download Iterative Methods for Sparse Linear Systems Book in PDF, ePub and Kindle

Mathematics of Computing -- General.


On Iterative Methods to Solve Nonlinear Equations

On Iterative Methods to Solve Nonlinear Equations
Author: Maria Àngela Grau Gotés
Publisher:
Total Pages: 95
Release: 2016
Genre:
ISBN:

Download On Iterative Methods to Solve Nonlinear Equations Book in PDF, ePub and Kindle

Many of the problems in experimental sciences and other disciplines can be expressed in the form of nonlinear equations. The solution of these equations is rarely obtained in closed form. With the development of computers, these problems can be addressed by numerical algorithms that approximate the solution. Specifically, fixed point iterative methods are used, which generate a convergent sequence presumably to the solution of the equation or system of equations. Since J.F. Traub (Iterative methods for the solution of equations, Prentice-Hall, N.J. 1964) initiated the qualitative as well the quantitative analysis of iterative methods in the 1960s, iterative methods for nonlinear systems has been a constantly interesting field of study for numerical analysts. Our contribution to this field is the analysis and construction of new iterative methods, by improving the order of convergence and computational efficiency either of these or other known methods. To study the new iterative methods that we have proposed, we reviewed analyzed and improved classic concepts of computational order of convergence, the error equation, and the computational cost of an iterative method for both an equation and a system of nonlinear equations. Specifically, we have worked on the following points: - We computed the local order of convergence for known two-step and new multi-step iterative methods by means of expansions in formal developments in power series of the function F, the Jacobian operator, the inverse Jacobian operator and the divided difference operator and its inverse operator. - We generated some measures that approximate the order of convergence. Four new variants for computing the computational order of convergence (COC) are given: one requires the value of the root, whilst the other three do not. - We constructed families of iterative schemes that are variants of Newton's method and Chebyshev's method and improve the order and the efficiency. - We studied several families of the modified Secant method (Secant, Kurchatov and Steffensen), evaluated variants of these methods and chose the most efficient. - We generalized the concepts of efficiency index and computational efficiency for nonlinear equations to systems of nonlinear equations. This has been termed the computational efficiency index (CEI). - We considered that in iterative process using variable precision, the accuracy will increase as the computation proceeds. The final result will be obtained as precisely as possible, depending on the computer and the software. - We expressed the cost of evaluating elementary functions in terms of products. This cost depends on the computer, the software and the arithmetic that we used. The above numerical calculations were performed in the algebraic system called MAPLE. - We presented a new way of comparing elapsed time for different iterative schemes. This consists of estimating the time required to achieve a correct decimal of the solution by the method selected. That is, we measured the relationship between the time to fulfill the stop criterion and the total number of correct decimals obtained by method. The five papers selected for this compendium were published in scientific journals in the area of applied mathematics. The impact factor of these journals is, in all cases, in the first third according to the classification of the Journal of Citation Reports. There are four preceding papers that no are part of this report by its publication date.


Convergence of Iterative Methods Applied to Large Overdetermined Linear and Nonlinear Systems of Equations Using Least Squares

Convergence of Iterative Methods Applied to Large Overdetermined Linear and Nonlinear Systems of Equations Using Least Squares
Author: Charles O. Stearns
Publisher:
Total Pages: 20
Release: 1970
Genre: Chebyshev polynomials
ISBN:

Download Convergence of Iterative Methods Applied to Large Overdetermined Linear and Nonlinear Systems of Equations Using Least Squares Book in PDF, ePub and Kindle

Solutions are obtained to large overdetermined systems of equations. Both nonlinear and linear systems are considered. The nonlinear system represents a dipole model of the earth's geomagnetic field, which is generated from spherical harmonic coefficients. This system of 64 unknowns and 1836 equations is solved by a maximum neighborhood method, which is an optimum interpolation between the well known Taylor's series and steepest descent methods. The original given values of the generated field are as large as 60,000 gamma, whereas a rms residual of 27.9 gamma is obtained with 173 iterations. The linear system of equations represents dipole changes required to account for the earth's secular change field which is generated from spherical harmonic coefficients. The dipole parameters computed from the nonlinear model are used as input parameters. The system contains 64 unknowns and 612 equations and is solved using a Chebyshev polynomial iterative method. These results are compared to results obtained by a direct solution of the normal equations of the system and results obtained by a pseudo-inverse method using a modified Gram-Schmidt factorization. Although the latter two methods give smaller rms values than the iterative method, the results of the iterative method are more reasonable in view of known properties of the results. The generated field has a rms value of 45 gamma per year. An rms residual of 2.5 gamma per year was obtained after 25,000 iterations.