Adaptive Sampling And Forecasting With Mobile Sensor Networks PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Adaptive Sampling And Forecasting With Mobile Sensor Networks PDF full book. Access full book title Adaptive Sampling And Forecasting With Mobile Sensor Networks.

Adaptive Sampling and Forecasting with Mobile Sensor Networks

Adaptive Sampling and Forecasting with Mobile Sensor Networks
Author: Han-Lim Choi
Publisher:
Total Pages: 219
Release: 2009
Genre:
ISBN:

Download Adaptive Sampling and Forecasting with Mobile Sensor Networks Book in PDF, ePub and Kindle

(cont.) This work proposes the smoother form of the mutual information inspired by the conditional independence relations, and demonstrates its advantages over a simple extension of the state-of-the-art: (a) it does not require integration of differential equations for long time intervals, (b) it allows for the calculation of accumulated information on-the-fly, and (c) it provides a legitimate information potential field combined with spatial interpolation techniques. The primary benefits of the presented methods are confirmed with numerical experiments using the Lorenz-2003 idealistic chaos model.


Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks

Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks
Author: Yunfei Xu
Publisher: Springer
Total Pages: 124
Release: 2015-10-27
Genre: Technology & Engineering
ISBN: 3319219219

Download Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks Book in PDF, ePub and Kindle

This brief introduces a class of problems and models for the prediction of the scalar field of interest from noisy observations collected by mobile sensor networks. It also introduces the problem of optimal coordination of robotic sensors to maximize the prediction quality subject to communication and mobility constraints either in a centralized or distributed manner. To solve such problems, fully Bayesian approaches are adopted, allowing various sources of uncertainties to be integrated into an inferential framework effectively capturing all aspects of variability involved. The fully Bayesian approach also allows the most appropriate values for additional model parameters to be selected automatically by data, and the optimal inference and prediction for the underlying scalar field to be achieved. In particular, spatio-temporal Gaussian process regression is formulated for robotic sensors to fuse multifactorial effects of observations, measurement noise, and prior distributions for obtaining the predictive distribution of a scalar environmental field of interest. New techniques are introduced to avoid computationally prohibitive Markov chain Monte Carlo methods for resource-constrained mobile sensors. Bayesian Prediction and Adaptive Sampling Algorithms for Mobile Sensor Networks starts with a simple spatio-temporal model and increases the level of model flexibility and uncertainty step by step, simultaneously solving increasingly complicated problems and coping with increasing complexity, until it ends with fully Bayesian approaches that take into account a broad spectrum of uncertainties in observations, model parameters, and constraints in mobile sensor networks. The book is timely, being very useful for many researchers in control, robotics, computer science and statistics trying to tackle a variety of tasks such as environmental monitoring and adaptive sampling, surveillance, exploration, and plume tracking which are of increasing currency. Problems are solved creatively by seamless combination of theories and concepts from Bayesian statistics, mobile sensor networks, optimal experiment design, and distributed computation.


Adaptive Sampling with Mobile WSN

Adaptive Sampling with Mobile WSN
Author: Koushil Sreenath
Publisher:
Total Pages:
Release: 2005
Genre: Electrical engineering and electronics
ISBN: 9780542466519

Download Adaptive Sampling with Mobile WSN Book in PDF, ePub and Kindle

The spatiotemporally varying network topology of mobile sensor networks makes it very suitable for applications such as reconstruction of environmental fields through sampling at locations that maximally reduce the largest uncertainty in the field estimate. Mobile sensor networks comprise of multiple heterogeneous resources and a deadlock-free resource scheduling in the presence of shared and routing resources becomes necessary to schedule the most efficient (cost/energy/time) resource for a task. Location information is imperative in sensor networks for most applications for localized sensing where localizing the network adaptively with no additional hardware is important. Adaptive sampling approaches for spatially distributed static linear and Gaussian fields with mobile robotic sensors are formulated and experimentally validated. Resource scheduling algorithms for dispatching resources in a deadlock-free manner in systems with shared and routing resources are mathematically formulated and experimentally validated. Simultaneous and Adaptive localization algorithms for sensor network localization through simple geometric constraints are validated through simulations. (Abstract shortened by UMI.).


Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems
Author: Frederica Darema
Publisher: Springer Nature
Total Pages: 937
Release: 2023-10-16
Genre: Computers
ISBN: 3031279867

Download Handbook of Dynamic Data Driven Applications Systems Book in PDF, ePub and Kindle

This Second Volume in the series Handbook of Dynamic Data Driven Applications Systems (DDDAS) expands the scope of the methods and the application areas presented in the first Volume and aims to provide additional and extended content of the increasing set of science and engineering advances for new capabilities enabled through DDDAS. The methods and examples of breakthroughs presented in the book series capture the DDDAS paradigm and its scientific and technological impact and benefits. The DDDAS paradigm and the ensuing DDDAS-based frameworks for systems’ analysis and design have been shown to engender new and advanced capabilities for understanding, analysis, and management of engineered, natural, and societal systems (“applications systems”), and for the commensurate wide set of scientific and engineering fields and applications, as well as foundational areas. The DDDAS book series aims to be a reference source of many of the important research and development efforts conducted under the rubric of DDDAS, and to also inspire the broader communities of researchers and developers about the potential in their respective areas of interest, of the application and the exploitation of the DDDAS paradigm and the ensuing frameworks, through the examples and case studies presented, either within their own field or other fields of study. As in the first volume, the chapters in this book reflect research work conducted over the years starting in the 1990’s to the present. Here, the theory and application content are considered for: Foundational Methods Materials Systems Structural Systems Energy Systems Environmental Systems: Domain Assessment & Adverse Conditions/Wildfires Surveillance Systems Space Awareness Systems Healthcare Systems Decision Support Systems Cyber Security Systems Design of Computer Systems The readers of this book series will benefit from DDDAS theory advances such as object estimation, information fusion, and sensor management. The increased interest in Artificial Intelligence (AI), Machine Learning and Neural Networks (NN) provides opportunities for DDDAS-based methods to show the key role DDDAS plays in enabling AI capabilities; address challenges that ML-alone does not, and also show how ML in combination with DDDAS-based methods can deliver the advanced capabilities sought; likewise, infusion of DDDAS-like approaches in NN-methods strengthens such methods. Moreover, the “DDDAS-based Digital Twin” or “Dynamic Digital Twin”, goes beyond the traditional DT notion where the model and the physical system are viewed side-by-side in a static way, to a paradigm where the model dynamically interacts with the physical system through its instrumentation, (per the DDDAS feed-back control loop between model and instrumentation).


Mobile Sensor Networks and Control

Mobile Sensor Networks and Control
Author: Derek A. Paley
Publisher:
Total Pages:
Release: 2020
Genre:
ISBN:

Download Mobile Sensor Networks and Control Book in PDF, ePub and Kindle

The control of mobile sensor networks uses sensor measurements to update a model of an unknown or estimated process, which in turn guides the collection of subsequent measurements--a feedback control framework called adaptive sampling. Applications for adaptive sampling exist in a wide range of settings, especially for unmanned or autonomous vehicles that can be deployed cheaply and in cooperative groups. The dynamics of mobile sensor platforms are often simplified to planar self-propelled particles subject to the ambient flow of the surrounding fluid. Sensor measurements are assimilated into continuous or discrete models of the process of interest, which in general can vary in space and time. The variability of the estimated process is one metric to score future candidate sampling trajectories, along with information- and uncertainty-based metrics. Sampling tasks are allocated to the network using centralized or decentralized optimization, in order to avoid redundant measurements and observational gaps.


Adaptive Sampling with Mobile WSN

Adaptive Sampling with Mobile WSN
Author: Koushil Sreenath
Publisher: Institution of Engineering and Technology
Total Pages: 0
Release: 2011-02-11
Genre: Technology & Engineering
ISBN: 9781849192576

Download Adaptive Sampling with Mobile WSN Book in PDF, ePub and Kindle

Adaptive Sampling with Mobile WSN develops algorithms for optimal estimation of environmental parametric fields. With a single mobile sensor, several approaches are presented to solve the problem of where to sample next to maximally and simultaneously reduce uncertainty in the field estimate and uncertainty in the localisation of the mobile sensor while respecting the dynamics of the time-varying field and the mobile sensor. A case study of mapping a forest fire is presented. Multiple static and mobile sensors are considered next, and distributed algorithms for adaptive sampling are developed resulting in the Distributed Federated Kalman Filter. However, with multiple resources a possibility of deadlock arises and a matrix-based discrete-event controller is used to implement a deadlock avoidance policy. Deadlock prevention in the presence of shared and routing resources is also considered. Finally, a simultaneous and adaptive localisation strategy is developed to simultaneously localise static and mobile sensors in the WSN in an adaptive manner. Experimental validation of several of these algorithms is discussed throughout the book.


Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control

Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control
Author: Zhang Ren
Publisher: Springer Nature
Total Pages: 1902
Release: 2022-07-29
Genre: Technology & Engineering
ISBN: 9811939985

Download Proceedings of 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control Book in PDF, ePub and Kindle

This book includes original, peer-reviewed research papers from the 2021 5th Chinese Conference on Swarm Intelligence and Cooperative Control (CCSICC2021), held in Shenzhen, China on January 19-22, 2022. The topics covered include but are not limited to: reviews and discussions of swarm intelligence, basic theories on swarm intelligence, swarm communication and networking, swarm perception, awareness and location, swarm decision and planning, cooperative control, cooperative guidance, swarm simulation and assessment. The papers showcased here share the latest findings on theories, algorithms and applications in swarm intelligence and cooperative control, making the book a valuable asset for researchers, engineers, and university students alike.


Handbook of Dynamic Data Driven Applications Systems

Handbook of Dynamic Data Driven Applications Systems
Author: Erik P. Blasch
Publisher: Springer Nature
Total Pages: 753
Release: 2022-05-11
Genre: Computers
ISBN: 3030745686

Download Handbook of Dynamic Data Driven Applications Systems Book in PDF, ePub and Kindle

The Handbook of Dynamic Data Driven Applications Systems establishes an authoritative reference of DDDAS, pioneered by Dr. Darema and the co-authors for researchers and practitioners developing DDDAS technologies. Beginning with general concepts and history of the paradigm, the text provides 32 chapters by leading experts in ten application areas to enable an accurate understanding, analysis, and control of complex systems; be they natural, engineered, or societal: The authors explain how DDDAS unifies the computational and instrumentation aspects of an application system, extends the notion of Smart Computing to span from the high-end to the real-time data acquisition and control, and manages Big Data exploitation with high-dimensional model coordination. The Dynamically Data Driven Applications Systems (DDDAS) paradigm inspired research regarding the prediction of severe storms. Specifically, the DDDAS concept allows atmospheric observing systems, computer forecast models, and cyberinfrastructure to dynamically configure themselves in optimal ways in direct response to current or anticipated weather conditions. In so doing, all resources are used in an optimal manner to maximize the quality and timeliness of information they provide. Kelvin Droegemeier, Regents’ Professor of Meteorology at the University of Oklahoma; former Director of the White House Office of Science and Technology Policy We may well be entering the golden age of data science, as society in general has come to appreciate the possibilities for organizational strategies that harness massive streams of data. The challenges and opportunities are even greater when the data or the underlying system are dynamic - and DDDAS is the time-tested paradigm for realizing this potential. Sangtae Kim, Distinguished Professor of Mechanical Engineering and Distinguished Professor of Chemical Engineering at Purdue University