Actuation Aware Simplified Dynamic Models For Robotic Legged Locomotion PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Actuation Aware Simplified Dynamic Models For Robotic Legged Locomotion PDF full book. Access full book title Actuation Aware Simplified Dynamic Models For Robotic Legged Locomotion.

Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion

Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion
Author: Romeo Orsolino
Publisher: Istitituto Italiano di Tecnologia (IIT)
Total Pages: 146
Release: 2019-02-14
Genre: Technology & Engineering
ISBN:

Download Actuation-Aware Simplified Dynamic Models for Robotic Legged Locomotion Book in PDF, ePub and Kindle

In the recent years, we witnessed an ever increasing number of successful hardware implementations of motion planners for legged robots. If one common property is to be identified among these real-world applications, that is the ability of performing online (re)planning. Online planning is forgiving, in the sense that it allows to relentlessly compensate for external disturbances of whatever form they might be, ranging from unmodeled dynamics to external pushes or unexpected obstacles and, at the same time, follow user commands. Initially replanning was restricted only to heuristic-based planners that exploit the low computational effort of simplified dynamic models. Such models deliberately only capture the main dynamics of the system, thus leaving to the controllers the issue of anchoring the desired trajectory to the whole body model of the robot. In recent years, however, a number of novel Model Predictive Control (MPC) approaches have been presented that attempt to increase the accuracy of the obtained solutions by employing more complex dynamic formulations, this without trading-off the computational efficiency of simplified models. In this dissertation, as an example of successful hardware implementation of heuristics and simplified model-based locomotion, I first describe the control framework that I developed for the generation of an omni-directional bounding gait for the HyQ quadruped robot. By analyzing the stable limit cycles for the sagittal dynamics and the Center of Pressure (CoP) for the lateral stabilization, the described locomotion framework is able to achieve a stable bounding gait while adapting the footsteps to terrains of mild roughness and to sudden changes of the user desired linear and angular velocities. The next topic reported and second contribution of this dissertation is my effort to formulate more descriptive simplified dynamic models, without compromising their computational efficiency, in order to extend the navigation capabilities of legged robots to complex geometry environments. With this in mind, I investigated the possibility of incorporating feasibility constraints in these template models and, in particular, I focused on the joint-torque limits, which are usually neglected at the planning stage. Along the same direction, the third contribution discussed in this thesis is the formulation of the so called actuation wrench polytope (AWP), defined as the set of feasible wrenches that an articulated robot can perform given its actuation limits. Interesected with the contact wrench cone (CWC), this yields a new 6D polytope that we name feasible wrench polytope (FWP), defined as the set of all wrenches that a legged robot can realize given its actuation capabilities and the friction constraints. Results are reported where, thanks to efficient computational geometry algorithms and to appropriate approximations, the FWP is employed for a one-step receding horizon optimization of center of mass trajectory and phase durations given a predefined step sequence on rough terrains. In order to augment the robot’s reachable workspace, I then decided to trade off the generality of the FWP formulation for a suboptimal scenario in which a quasi-static motion is assumed. This led to the definition of a new concept that I refer to under the name of feasible region. This can be seen as a different variant of 2D linear subspaces orthogonal to gravity where the robot is guaranteed to place its own center of mass (CoM) while being able to carry its own body weight given its actuation capabilities. The feasible region provides an intuitive tool for the visualization in 2D of the actuation capabilities of legged robots. The low dimensionality of the feasible region also enables the concurrent online optimization of actuation consistent CoM trajectories and target foothold locations on rough terrains, which can hardly be achieved with other state-of-the-art approaches.


Bioinspired Legged Locomotion

Bioinspired Legged Locomotion
Author: Maziar Ahmad Sharbafi
Publisher: Butterworth-Heinemann
Total Pages: 698
Release: 2017-11-21
Genre: Technology & Engineering
ISBN: 0128037741

Download Bioinspired Legged Locomotion Book in PDF, ePub and Kindle

Bioinspired Legged Locomotion: Models, Concepts, Control and Applications explores the universe of legged robots, bringing in perspectives from engineering, biology, motion science, and medicine to provide a comprehensive overview of the field. With comprehensive coverage, each chapter brings outlines, and an abstract, introduction, new developments, and a summary. Beginning with bio-inspired locomotion concepts, the book's editors present a thorough review of current literature that is followed by a more detailed view of bouncing, swinging, and balancing, the three fundamental sub functions of locomotion. This part is closed with a presentation of conceptual models for locomotion. Next, the book explores bio-inspired body design, discussing the concepts of motion control, stability, efficiency, and robustness. The morphology of legged robots follows this discussion, including biped and quadruped designs. Finally, a section on high-level control and applications discusses neuromuscular models, closing the book with examples of applications and discussions of performance, efficiency, and robustness. At the end, the editors share their perspective on the future directions of each area, presenting state-of-the-art knowledge on the subject using a structured and consistent approach that will help researchers in both academia and industry formulate a better understanding of bioinspired legged robotic locomotion and quickly apply the concepts in research or products. Presents state-of-the-art control approaches with biological relevance Provides a thorough understanding of the principles of organization of biological locomotion Teaches the organization of complex systems based on low-dimensional motion concepts/control Acts as a guideline reference for future robots/assistive devices with legged architecture Includes a selective bibliography on the most relevant published articles


Hybrid Control and Motion Planning of Dynamical Legged Locomotion

Hybrid Control and Motion Planning of Dynamical Legged Locomotion
Author: Nasser Sadati
Publisher: John Wiley & Sons
Total Pages: 201
Release: 2012-09-11
Genre: Technology & Engineering
ISBN: 1118393724

Download Hybrid Control and Motion Planning of Dynamical Legged Locomotion Book in PDF, ePub and Kindle

This book addresses the need in the field for a comprehensive review of motion planning algorithms and hybrid control methodologies for complex legged robots. Introducing a multidisciplinary systems engineering approach for tackling many challenges posed by legged locomotion, the book provides engineering detail including hybrid models for planar and 3D legged robots, as well as hybrid control schemes for asymptotically stabilizing periodic orbits in these closed-loop systems. Complete with downloadable MATLAB code of the control algorithms and schemes used in the book, this book is an invaluable guide to the latest developments and future trends in dynamical legged locomotion.


Control Implementation of Dynamic Locomotion on Compliant, Underactuated, Force-Controlled Legged Robots with Non-Anthropomorphic Design

Control Implementation of Dynamic Locomotion on Compliant, Underactuated, Force-Controlled Legged Robots with Non-Anthropomorphic Design
Author: Jeffrey Chen Yu
Publisher:
Total Pages: 224
Release: 2020
Genre:
ISBN:

Download Control Implementation of Dynamic Locomotion on Compliant, Underactuated, Force-Controlled Legged Robots with Non-Anthropomorphic Design Book in PDF, ePub and Kindle

The control of locomotion on legged robots traditionally involves a robot that takes a standard legged form, such as the anthropomorphic humanoid, the dog-like quadruped, or the bird-like biped. Additionally, these systems will often be actuated with position-controlled servos or series-elastic actuators that are connected through rigid links. This work investigates the control implementation of dynamic, force-controlled locomotion on a family of legged systems that significantly deviate from these classic paradigms by incorporating modern, state-of-the-art proprioceptive actuators on uniquely configured compliant legs that do not closely resemble those found in nature. The results of this work can be used to better inform how to implement controllers on legged systems without stiff, position-controlled actuators, and also provide insight on how intelligently designed mechanical features can potentially simplify the control of complex, nonlinear dynamical systems like legged robots. To this end, this work presents the approach to control for a family of non-anthropomorphic bipedal robotic systems which are developed both in simulation and with physical hardware. The first is the Non-Anthropomorphic Biped, Version 1 (NABi-1) that features position-controlled joints along with a compliant foot element on a minimally actuated leg, and is controlled using simple open-loop trajectories based on the Zero Moment Point. The second system is the second version of the non-anthropomorphic biped (NABi-2) which utilizes the proprioceptive Back-drivable Electromagnetic Actuator for Robotics (BEAR) modules for actuation and fully realizes feedback-based force controlled locomotion. These systems are used to highlight both the strengths and weaknesses of utilizing proprioceptive actuation in systems, and suggest the tradeoffs that are made when using force control for dynamic locomotion. These systems also present case studies for different approaches to system design when it comes to bipedal legged robots.


Quadrupedal Locomotion

Quadrupedal Locomotion
Author: Pablo González de Santos
Publisher: Springer Science & Business Media
Total Pages: 272
Release: 2007-02-17
Genre: Technology & Engineering
ISBN: 1846283078

Download Quadrupedal Locomotion Book in PDF, ePub and Kindle

Walking machines have advantages over traditional vehicles, and have already accomplished tasks that wheeled or tracked robots cannot handle. Nevertheless, their use in industry and services is currently limited in scope. This book brings together methods and techniques that have been developed to deal with obstacles to wider acceptance of legged robots. Part I provides an historical overview. Part II concentrates on control techniques, as applied to Four-legged robots.


A General Model of Legged Locomotion on Natural Terrain

A General Model of Legged Locomotion on Natural Terrain
Author: David J. Manko
Publisher: Springer
Total Pages: 116
Release: 2012-11-10
Genre: Technology & Engineering
ISBN: 9781461365884

Download A General Model of Legged Locomotion on Natural Terrain Book in PDF, ePub and Kindle

Dynamic modeling is the fundamental building block for mechanism analysis, design, control and performance evaluation. One class of mechanism, legged machines, have multiple closed-chains established through intermittent ground contacts. Further, walking on natural terrain introduces nonlinear system compliance in the forms of foot sinkage and slippage. Closed-chains constrain the possible motions of a mechanism while compliances affect the redistribution of forces throughout the system. A General Model of Legged Locomotion on Natural Terrain develops a dynamic mechanism model that characterizes indeterminate interactions of a closed-chain robot with its environment. The approach is applicable to any closed-chain mechanism with sufficient contact compliance, although legged locomotion on natural terrain is chosen to illustrate the methodology. The modeling and solution procedures are general to all walking machine configurations, including bipeds, quadrupeds, beam-walkers and hopping machines. This work develops a functional model of legged locomotion that incorporates, for the first time, non-conservative foot-soil interactions in a nonlinear dynamic formulation. The model was applied to a prototype walking machine, and simulations generated significant insights into walking machine performance on natural terrain. The simulations are original and essential contributions to the design, evaluation and control of these complex robot systems. While posed in the context of walking machines, the approach has wider applicability to rolling locomotors, cooperating manipulators, multi-fingered hands, and prehensile agents.


Walking Machines

Walking Machines
Author: D. J. Todd
Publisher: Springer Science & Business Media
Total Pages: 184
Release: 2013-03-08
Genre: Science
ISBN: 1468468588

Download Walking Machines Book in PDF, ePub and Kindle

The first chapter of this book traces the history of the development of walking machines from the original ideas of man-amplifiers and military rough-ground transport to today's diverse academic and industrial research and development projects. It concludes with a brief account of research on other unusual methods of locomotion. The heart of the book is the next three chapters on the theory and engineering of legged robots. Chapter 2 presents the basics of land loco motion, going on to consider the energetics of legged movement and the description and classification of gaits. Chapter 3, dealing with the mechanics of legged vehicles, goes into leg number and arrangement, and discusses mechanical design and actuation methods. Chapter 4 deals with analysis and control, describing the aims of control theory and the methods of modelling and control which have been used for both highly dynamic robots and multi-legged machines. Having dealt with the theory of control it is necessary to discuss the computing system on which control is to be implemented. This is done in Chapter 5, which covers architectures, sensing, algorithms and pro gramming languages. Chapter 6 brings together the threads of the theory and engineering discussed in earlier chapters and summarizes the current walking machine research projects. Finally, the applications, both actual and potential, of legged locomotion are described. Introduction Research into legged machines is expanding rapidly. There are several reasons why this is happening at this particular time.


Multi-body Dynamic Modeling of Multi-legged Robots

Multi-body Dynamic Modeling of Multi-legged Robots
Author: Abhijit Mahapatra
Publisher: Springer Nature
Total Pages: 203
Release: 2020-02-27
Genre: Computers
ISBN: 9811529531

Download Multi-body Dynamic Modeling of Multi-legged Robots Book in PDF, ePub and Kindle

This book describes the development of an integrated approach for generating the path and gait of realistic hexapod robotic systems. It discusses in detail locomation with straight-ahead, crab and turning motion capabilities in varying terrains, like sloping surfaces, staircases, and various user-defined rough terrains. It also presents computer simulations and validation using Virtual Prototyping (VP) tools and real-world experiments. The book also explores improving solutions by applying the developed nonlinear, constrained inverse dynamics model of the system formulated as a coupled dynamical problem based on the Newton–Euler (NE) approach and taking into account realistic environmental conditions. The approach is developed on the basis of rigid multi-body modelling and the concept that there is no change in the configuration of the system in the short time span of collisions.


Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion

Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion
Author: Gerardo Bledt
Publisher:
Total Pages: 160
Release: 2020
Genre:
ISBN:

Download Regularized Predictive Control Framework for Robust Dynamic Legged Locomotion Book in PDF, ePub and Kindle

Legged robots have the potential to be highly dynamic machines capable of outperforming humans and animals in executing locomotion tasks within dangerous and unstructured environments. Unfortunately, current control methods still lack the ability to move with the agility and robustness needed to traverse arbitrary terrains with the same grace and reliability as animals. This dissertation presents the successful implementation of a novel nonlinear optimization-based Regularized Predictive Control (RPC) framework that optimizes robot states, footstep locations, and ground reaction forces over a future prediction horizon. RPC exploits expertly designed and data-driven extracted heuristics by directly embedding them in the optimization through regularization in the cost function. Well-designed regularization should bias results towards a "good enough" heuristic solution by shaping the cost space favorably, while allowing the optimization to find a better result if it exists. However, designing meaningful regularized cost functions and adequate heuristics is challenging and not straightforward. A novel framework is presented for automatically extracting and designing new principled legged locomotion heuristics by fitting simple intuitive models to simulated and experimental data using RPC. Statistically correlated relationships between desired commands, robot states, and optimal control inputs are found by allowing the optimization to more exhaustively search the cost space during offline explorations when not subjected to real-time computation constraints. This method extracts simple, but powerful heuristics that can approximate complex dynamics and account for errors stemming from model simplifications or parameter uncertainty without the loss of physical intuition. Nonlinear optimization-based controllers have shown improved capabilities in simulation, but fall short when implemented on hardware systems that must adhere to real-time computation constraints and physical limits. Various methods and algorithms critical to the success of the robot were developed to overcome these challenges. The controller is verified experimentally using the MIT Cheetah 3 and Mini Cheetah robot platforms. Results demonstrate the ability of the robot to track dynamic velocity and turn rate commands with a variety of parametrized gaits, remain upright through large impulsive and sustained disturbances, and traverse highly irregular terrains. All of these behaviors are achieved with no modifications to the controller structure and with one set of gains signifying the generalized robustness of RPC. This work represents a step towards more robust dynamic locomotion capabilities for legged robots.