Active Control Of Combustion Instabilities In Gas Turbine Engines For Low Emissions Part I Physics Based And Experimentally Identified Models Of Combustion Instability PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Active Control Of Combustion Instabilities In Gas Turbine Engines For Low Emissions Part I Physics Based And Experimentally Identified Models Of Combustion Instability PDF full book. Access full book title Active Control Of Combustion Instabilities In Gas Turbine Engines For Low Emissions Part I Physics Based And Experimentally Identified Models Of Combustion Instability.

Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part I: Physics-Based and Experimentally Identified Models of Combustion Instability

Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part I: Physics-Based and Experimentally Identified Models of Combustion Instability
Author: C. A. Jacobson
Publisher:
Total Pages: 12
Release: 2000
Genre:
ISBN:

Download Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part I: Physics-Based and Experimentally Identified Models of Combustion Instability Book in PDF, ePub and Kindle

This paper details the development of a thermoacoustic model and associated dynamic analysis. The model describes the results obtained in a gas fueled experimental combustion program carried out at UTRC. The contents of the paper are (a) the development of a thermoacoustic model composed of acoustic and heat release components, (b) the dynamic analysis of the resulting non-linear model using harmonic balance methods to compute linear stability boundaries and the amplitudes of oscillations and (c) the calibration of the model to experimental data.


Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part II: Adaptive Control Algorithm Development, Demonstration and Performance Limitations

Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part II: Adaptive Control Algorithm Development, Demonstration and Performance Limitations
Author: Andrzej Banaszuk
Publisher:
Total Pages: 14
Release: 2001
Genre:
ISBN:

Download Active Control of Combustion Instabilities in Gas Turbine Engines for Low Emissions. Part II: Adaptive Control Algorithm Development, Demonstration and Performance Limitations Book in PDF, ePub and Kindle

We present results of experiment with two distinct extremum-seeking adaptive algorithms for control of combustion instability suitable for reduction of acoustic pressure oscillations in gas turbine over large range of operating conditions. The algorithms consists of a frequency tracking Extended Kalman Filter to determine the in-phase component, the quadrature component, and the magnitude of the acoustic mode of interest, and a phase shifting controller with the controller phase tuned using an extremum-seeking algorithms. The algorithms are also applicable for control of oscillations of systems whose oscillation frequency and optimal control phase shift depends on operating conditions, and which are driven by strong broad-band disturbance. The algorithms have been tested in combustion experiments involving full-scale engine hardware and during simulated fast engine transients.


Combustion Instabilities in Gas Turbine Engines

Combustion Instabilities in Gas Turbine Engines
Author: Timothy C. Lieuwen
Publisher: AIAA (American Institute of Aeronautics & Astronautics)
Total Pages: 688
Release: 2005
Genre: Science
ISBN:

Download Combustion Instabilities in Gas Turbine Engines Book in PDF, ePub and Kindle

This book offers gas turbine users and manufacturers a valuable resource to help them sort through issues associated with combustion instabilities. In the last ten years, substantial efforts have been made in the industrial, governmental, and academic communities to understand the unique issues associated with combustion instabilities in low-emission gas turbines. The objective of this book is to compile these results into a series of chapters that address the various facets of the problem. The Case Studies section speaks to specific manufacturer and user experiences with combustion instabilities in the development stage and in fielded turbine engines. The book then goes on to examine The Fundamental Mechanisms, The Combustor Modeling, and Control Approaches.


Reduced-order Modeling and Active Control of Dry-low-emission Combustion

Reduced-order Modeling and Active Control of Dry-low-emission Combustion
Author: Tongxun Yi
Publisher:
Total Pages: 179
Release: 2007
Genre:
ISBN: 9780549023111

Download Reduced-order Modeling and Active Control of Dry-low-emission Combustion Book in PDF, ePub and Kindle

This dissertation is a complementary experimental and theoretical investigation of combustion instability and lean blowout (LBO) in dry-low-emission (DLE) gas turbine engines, aiming to understand the fundamental mechanisms and shed light on active combustion control.


Causes of Combustion Instabilities with Passive and Active Methods of Control for Practical Application to Gas Turbine Engines

Causes of Combustion Instabilities with Passive and Active Methods of Control for Practical Application to Gas Turbine Engines
Author: Michael D. Cornwell
Publisher:
Total Pages: 415
Release: 2011
Genre:
ISBN:

Download Causes of Combustion Instabilities with Passive and Active Methods of Control for Practical Application to Gas Turbine Engines Book in PDF, ePub and Kindle

Combustion at high pressure in applications such as rocket engines and gas turbine engines commonly experience destructive combustion instabilities. These instabilities results from interactions between combustion heat release, fluid mechanics and acoustics. This research explores the significant affect of unstable fluid mechanics processes in augmenting unstable periodic combustion heat release. The frequency of the unstable heat release may shift to match one of the combustors natural acoustic frequencies which then can result in significant energy exchange from chemical to acoustic energy resulting in thermoacoustic instability. The mechanisms of the fluid mechanics in coupling combustion to acoustics are very broad with many varying mechanisms explained in detail in the first chapter. Significant effort is made in understanding these mechanisms in this research in order to find commonalities, useful for mitigating multiple instability mechanisms. The complexity of combustion instabilities makes mitigation of combustion instabilities very difficult as few mitigation methods have historically proven to be very effective for broad ranges of combustion instabilities. This research identifies turbulence intensity near the forward stagnation point and movement of the forward stagnation point as a common link in what would otherwise appear to be very different instabilities. The most common method of stabilization of both premixed and diffusion flame combustion is through the introduction of swirl. Reverse flow along the centerline is introduced to transport heat and chemically active combustion products back upstream to sustain combustion. This research develops methods to suppress the movement of the forward stagnation point without suppressing the development of the vortex breakdown process which is critical to the transport of heat and reactive species necessary for flame stabilization. These methods are useful in suppressing the local turbulence at the forward stagnation point, limiting dissipation of heat and reactive species significantly improving stability. Combustion hardware is developed and tested to demonstrate the stability principles developed as part of this research. In order to more completely understand combustion instability a very unique method of combustion was researched where there are no discrete points of combustion initiation such as the forward stagnation point typical in many combustion systems including swirl and jet wake stabilized combustion. This class of combustion which has empirical evidence of great stability and efficient combustion with low CO, NOx and UHC emissions is described as high oxidization temperature distributed combustion. This mechanism of combustion is shown to be stable largely because there are no stagnations points susceptible to fluid mechanic perturbations. The final topic of research is active combustion control by fuel modulation. This may be the only practical method of controlling most instabilities with a single technique. As there are many papers reporting active combustion control algorithms this research focused on the complexities of the physics of fuel modulation at frequencies up to 1000 Hz with proportionally controlled flow amplitude. This research into the physics of high speed fluid movement, oscillation mechanical mechanisms and electromagnetics are demonstrated by development and testing of a High Speed Latching Oscillator Valve.


Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype

Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype
Author: National Aeronautics and Space Adm Nasa
Publisher: Independently Published
Total Pages: 28
Release: 2019-01-13
Genre: Science
ISBN: 9781793905758

Download Characterization and Simulation of the Thermoacoustic Instability Behavior of an Advanced, Low Emissions Combustor Prototype Book in PDF, ePub and Kindle

Extensive research is being done toward the development of ultra-low-emissions combustors for aircraft gas turbine engines. However, these combustors have an increased susceptibility to thermoacoustic instabilities. This type of instability was recently observed in an advanced, low emissions combustor prototype installed in a NASA Glenn Research Center test stand. The instability produces pressure oscillations that grow with increasing fuel/air ratio, preventing full power operation. The instability behavior makes the combustor a potentially useful test bed for research into active control methods for combustion instability suppression. The instability behavior was characterized by operating the combustor at various pressures, temperatures, and fuel and air flows representative of operation within an aircraft gas turbine engine. Trends in instability behavior versus operating condition have been identified and documented, and possible explanations for the trends provided. A simulation developed at NASA Glenn captures the observed instability behavior. The physics-based simulation includes the relevant physical features of the combustor and test rig, employs a Sectored 1-D approach, includes simplified reaction equations, and provides time-accurate results. A computationally efficient method is used for area transitions, which decreases run times and allows the simulation to be used for parametric studies, including control method investigations. Simulation results show that the simulation exhibits a self-starting, self-sustained combustion instability and also replicates the experimentally observed instability trends versus operating condition. Future plans are to use the simulation to investigate active control strategies to suppress combustion instabilities and then to experimentally demonstrate active instability suppression with the low emissions combustor prototype, enabling full power, stable operation. DeLaat, John C. and Paxson, Daniel E. Glenn Research Cent


Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines

Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 30
Release: 2018-08-20
Genre:
ISBN: 9781721677191

Download Validation of an Adaptive Combustion Instability Control Method for Gas-Turbine Engines Book in PDF, ePub and Kindle

This paper describes ongoing testing of an adaptive control method to suppress high frequency thermo-acoustic instabilities like those found in lean-burning, low emission combustors that are being developed for future aircraft gas turbine engines. The method called Adaptive Sliding Phasor Averaged Control, was previously tested in an experimental rig designed to simulate a combustor with an instability of about 530 Hz. Results published earlier, and briefly presented here, demonstrated that this method was effective in suppressing the instability. Because this test rig did not exhibit a well pronounced instability, a question remained regarding the effectiveness of the control methodology when applied to a more coherent instability. To answer this question, a modified combustor rig was assembled at the NASA Glenn Research Center in Cleveland, Ohio. The modified rig exhibited a more coherent, higher amplitude instability, but at a lower frequency of about 315 Hz. Test results show that this control method successfully reduced the instability pressure of the lower frequency test rig. In addition, due to a certain phenomena discovered and reported earlier, the so called Intra-Harmonic Coupling, a dramatic suppression of the instability was achieved by focusing control on the second harmonic of the instability. These results and their implications are discussed, as well as a hypothesis describing the mechanism of intra-harmonic coupling. Kopasakis, George and DeLaat, John C. and Chang, Clarence T. Glenn Research Center NASA/TM-2004-213198, AIAA Paper 2004-4028, E-14698