A Step Closer To Visualizing The Electron Phonon Interplay PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Step Closer To Visualizing The Electron Phonon Interplay PDF full book. Access full book title A Step Closer To Visualizing The Electron Phonon Interplay.

A Step Closer to Visualizing the Electron___phonon Interplay

A Step Closer to Visualizing the Electron___phonon Interplay
Author:
Publisher:
Total Pages: 2
Release: 2011
Genre:
ISBN:

Download A Step Closer to Visualizing the Electron___phonon Interplay Book in PDF, ePub and Kindle

The origin of the very high superconducting transition temperature (Tc) in ceramic copper oxide superconductors is one of the greatest mysteries in modern physics. In the superconducting state, electrons form pairs (known as Cooper pairs) and condense into the superfluid state to conduct electric current with zero resistance. For conventional superconductors, it is well established that the 2 electrons in a Cooper pair are 'bonded' by lattice vibrations (phonons), whereas in high-Tc superconductors, the 'glue' for the Cooper pairs is still under intense discussion. Although the high transition temperature and the unconventional pairing symmetry (d-wave symmetry) have led many researchers to believe that the pairing mechanism results from electron-electron interaction, increasing evidence shows that electron-phonon coupling also significantly influences the low-energy electronic structures and hence may also play an important role in high-Tc superconductivity. In a recent issue of PNAS, Carbone et al. use ultrafast electron diffraction, a recently developed experimental technique, to attack this problem from a new angle, the dynamics of the electronic relaxation process involving phonons. Their results provide fresh evidence for the strong interplay between electronic and atomic degrees of freedom in high-Tc superconductivity. In general, ultrafast spectroscopy makes use of the pump-probe method to study the dynamic process in material. In such experiments, one first shoots an ultrafast (typically 10-100 fs) 'pumping' pulse at the sample to drive its electronic system out of the equilibrium state. Then after a brief time delay ([Delta]t) of typically tens of femtoseconds to tens of picoseconds, a 'probing' pulse of either photons or electrons is sent in to probe the sample's transient state. By varying [Delta]t, one can study the process by which the system relaxes back to the equilibrium state, thus acquiring the related dynamic information. This pump-probe experiment is reminiscent of the standard method used by bell makers for hundreds of years to judge the quality of their products (hitting a bell then listening to how the sound would fade away), albeit the relevant time scale here is way beyond tens of femtoseconds. Traditionally, ultrafast spectroscopy was carried out to study gas-phase reactions, but it has also been applied to study condensed phase systems since the development of reliable solid-state ultrafast lasers approximately a decade ago. In addition, the ability to control pulse width, wavelength, and amplification of the output of Ti:Sapphire lasers has further increased the capability of this experimental method. During the past decade, many ultrafast pump-probe experiments have been carried out in various fields by using different probing methods, such as photo-resistivity, fluorescence yield, and photoemission, and they have revealed much new information complementary to the equilibrium spectroscopy methods used before. Carbone et al. used the photon-pump, electron (diffraction)-probe method. The pumping photon pulse first drives the electrons in the sample into an oscillating mode along its polarization direction. Then during the delay time, these excited electrons can transfer excess energy to the adjacent nuclei and cause crystal lattice vibration on their way back to the equilibrium state. An ultrashort electron pulse is shot at the sample at various time delays [Delta]t and the diffraction pattern is collected. Because the electron diffraction pattern is directly related to the crystal lattice structure and its motion, this technique provides a natural way to study the electron-phonon coupling problem. Furthermore, by adjusting the pump pulse's relative polarization with respect to the Cu-O bond direction, Carbone et al. were able to acquire the electron-phonon coupling strength along different directions. Focusing on the lattice dynamic along the c axis, Carbone et al. found that the c-axis phonons in the optimally-doped Bi2Sr2CaCu2O (Bi2212) are coupled to the electrons with different strength along different directions within the CuO2 plane. The coupling strength reaches its largest value along the 2 Cu-O bond directions and becomes the weakest along the bisector of the angle formed by the 2 Cu-O bonds. As pointed out by Carbone et al., these observations agree well with the calculated coupling strength between electrons and the buckling phonons. Furthermore, their observation of this anisotropic electron-phonon coupling also agrees with results from angle-resolved photoemission (ARPES), which measures the equilibrium-state properties of materials. In ARPES measurements, electron-phonon coupling manifests itself as a kink anomaly in the band dispersion and a corresponding sudden broadening in the spectral width.


4D Visualization of Matter

4D Visualization of Matter
Author: Ahmed H Zewail
Publisher: World Scientific Publishing Company
Total Pages: 426
Release: 2014-09-12
Genre: Technology & Engineering
ISBN: 1783265043

Download 4D Visualization of Matter Book in PDF, ePub and Kindle

Ever since the beginning of mankind's efforts to pursue scientific inquiry into the laws of nature, visualization of the very distant and the very small has been paramount. The examples are numerous. A century ago, the atom appeared mysterious, a “raisin or plum pie of no structure,” until it was visualized on the appropriate length and time scales. Similarly, with telescopic observations, a central dogma of the cosmos was changed and complexity yielded to simplicity of the heliocentric structure and motion in our solar system. For matter, in over a century of developments, major advances have been made to explore the inner microscopic structures and dynamics. These advances have benefited many fields of endeavor, but visualization was incomplete; it was limited either to the 3D spatial structure or to the 1D temporal evolution. However, in systems with myriads of atoms, 4D spatiotemporal visualization is essential for dissecting their complexity. The biological world is rich with examples, and many molecular diseases cannot be fully understood without such direct visualization, as, for example, in the case of Alzheimer's and Parkinson's. The same is true for phenomena in materials science, chemistry, and nanoscience. This anthology is an account of the collected works that have emerged over the past decade from Caltech. Through recent publications, the volume provides overviews of the principles, the electron-based techniques, and the applications made. Thanks to advances in imaging principles and technology, it is now possible with 4D electron microscopy to reach ten orders of magnitude improvement in time resolution while simultaneously conserving the atomic spatial resolution in visualization. This is certainly a long way from Robert Hooke's microscopy, which was recorded in his 1665 masterpiece Micrographia.


Halide Perovskites

Halide Perovskites
Author: Tze-Chien Sum
Publisher: John Wiley & Sons
Total Pages: 312
Release: 2019-03-25
Genre: Technology & Engineering
ISBN: 3527341110

Download Halide Perovskites Book in PDF, ePub and Kindle

Real insight from leading experts in the field into the causes of the unique photovoltaic performance of perovskite solar cells, describing the fundamentals of perovskite materials and device architectures. The authors cover materials research and development, device fabrication and engineering methodologies, as well as current knowledge extending beyond perovskite photovoltaics, such as the novel spin physics and multiferroic properties of this family of materials. Aimed at a better and clearer understanding of the latest developments in the hybrid perovskite field, this is a must-have for material scientists, chemists, physicists and engineers entering or already working in this booming field.


Superconductivity

Superconductivity
Author: Roland Combescot
Publisher: Cambridge University Press
Total Pages: 348
Release: 2022-03-17
Genre: Science
ISBN: 1108611257

Download Superconductivity Book in PDF, ePub and Kindle

Superconductivity is among the most exciting of quantum phenomena in condensed matter physics, and has important applications across science and technology, from fusion reactors to particle accelerators. This self-contained text provides a comprehensive account of the physical foundations of superconductivity and related recent developments in the field. Beginning with a detailed description of the BSC theory of superconductivity, the book then describes the subsequent successes of this landmark theory and proceeds to more advanced topics such as Josephson effects and vortices. The strong coupling theory of superconductivity is introduced in later chapters, providing a springboard to important current research on hydride superconductors, which have displayed very high critical temperatures. Recent manifestations of superfluidity in ultracold atoms physics are also described. This book will give readers a solid grounding in the theory and applications of superconductivity, and an appreciation of its broader importance in the field of modern condensed matter physics.


Solid State Physics

Solid State Physics
Author: Philip Hofmann
Publisher: John Wiley & Sons
Total Pages: 235
Release: 2011-11-28
Genre: Science
ISBN: 352765707X

Download Solid State Physics Book in PDF, ePub and Kindle

Filling a gap in the literature for a brief course in solid state physics, this is a clear and concise introduction that not only describes all the basic phenomena and concepts, but also discusses such advanced issues as magnetism and superconductivity. This textbook assumes only basic mathematical knowledge on the part of the reader and includes more than 100 discussion questions and some 70 problems, with solutions as well as further supplementary material available free to lecturers from the Wiley-VCH website.


Dynamics at Surfaces: Understanding Energy Dissipation and Physicochemical Processes at the Atomic and Molecular Level

Dynamics at Surfaces: Understanding Energy Dissipation and Physicochemical Processes at the Atomic and Molecular Level
Author: Marco Sacchi
Publisher: Frontiers Media SA
Total Pages: 120
Release: 2024-04-26
Genre: Science
ISBN: 2832548466

Download Dynamics at Surfaces: Understanding Energy Dissipation and Physicochemical Processes at the Atomic and Molecular Level Book in PDF, ePub and Kindle

Energy release to solid interfaces following chemical reactions is ubiquitous in a vast range of phenomena. Energy dissipation and dynamical disorder (surface entropy), surface friction and molecular diffusion control the rates of heterogeneous catalytic reactions, the efficiency of novel technology, lubrication as well as materials growth including self-assembly and nano-structures. Yet we understand little about the underlying nature of these mechanisms. Fundamentally, energy dissipation including interactions with phonons and electron-hole pairs determines the lifetime of molecular vibrations and rotations as well as the decoherence rate of quantum states. These processes form a central point for many aspects in physical chemistry, are embedded in the mechanisms that control surface dynamical processes and are critical factors in catalysis. They are equally relevant for physicochemical processes in the Earth's atmosphere and astrochemistry occurring on cosmic dust grains.


Light Scattering in Solids VI

Light Scattering in Solids VI
Author: Manuel Cardona
Publisher: Springer Science & Business Media
Total Pages: 539
Release: 2005-07-31
Genre: Science
ISBN: 3540468927

Download Light Scattering in Solids VI Book in PDF, ePub and Kindle

This is the sixth volume of a well-established and popular series in which expert practitioners discuss topical aspects of light scattering in solids. This volume discusses recent results of Raman spectroscopy of high Tc superconductors, organic polymers, rare earth compounds, semimagnetic superconductors, and silver halides, as well as developments in the rapidly growing field of time-resolved Raman spectroscopy. Emphasis is placed on obtaining information about elementary excitations, the basic properties of materials, and the use of Raman spectroscopy as an analytical tool. This volume may be regarded as an encyclopedia of condensed matter physics from the viewpoint of the Raman spectroscopist. It will be useful to advanced students and to all researchers who apply Raman spectroscopy in their work.


Macro- to Microscale Heat Transfer

Macro- to Microscale Heat Transfer
Author: D. Y. Tzou
Publisher: John Wiley & Sons
Total Pages: 576
Release: 2014-09-18
Genre: Technology & Engineering
ISBN: 1118818261

Download Macro- to Microscale Heat Transfer Book in PDF, ePub and Kindle

Physical processes taking place in micro/nanoscale strongly depend on the material types and can be very complicated. Known approaches include kinetic theory and quantum mechanics, non-equilibrium and irreversible thermodynamics, molecular dynamics, and/or fractal theory and fraction model. Due to innately different physical bases employed, different approaches may involve different physical properties in describing micro/nanoscale heat transport. In addition, the parameters involved in different approaches, may not be mutually inclusive. Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition continues the well-received concept of thermal lagging through the revolutionary approach that focuses on the finite times required to complete the various physical processes in micro/nanoscale. Different physical processes in heat/mass transport imply different delay times, which are common regardless of the material type. The delay times, termed phase lags, are characteristics of materials. Therefore the dual-phase-lag model developed is able to describe eleven heat transfer models from macro to nanoscale in the same framework of thermal lagging. Recent extensions included are the lagging behavior in mass transport, as well as the nonlocal behavior in space, bearing the same merit of thermal lagging in time, in shrinking the ultrafast response down to the nanoscale. Key features: Takes a unified approach describing heat and mass transport from macro, micro to nanoscale Compares experimental results for model validation Includes easy to follow mathematical formulation Accompanied by a website hosting supporting material Macro- to Microscale Heat Transfer: The Lagging Behavior, Second Edition is a comprehensive reference for researchers and practitioners, and graduate students in mechanical, aerospace, biological and chemical engineering.