A Numerical Study Of Viscous Vortex Rings Using A Spectral Method PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Numerical Study Of Viscous Vortex Rings Using A Spectral Method PDF full book. Access full book title A Numerical Study Of Viscous Vortex Rings Using A Spectral Method.

A Numerical Study of Viscous Vortex Rings Using a Spectral Method

A Numerical Study of Viscous Vortex Rings Using a Spectral Method
Author: National Aeronautics and Space Administration (NASA)
Publisher: Createspace Independent Publishing Platform
Total Pages: 170
Release: 2018-07-17
Genre:
ISBN: 9781722905439

Download A Numerical Study of Viscous Vortex Rings Using a Spectral Method Book in PDF, ePub and Kindle

Viscous, axisymmetric vortex rings are investigated numerically by solving the incompressible Navier-Stokes equations using a spectral method designed for this type of flow. The results presented are axisymmetric, but the method is developed to be naturally extended to three dimensions. The spectral method relies on divergence-free basis functions. The basis functions are formed in spherical coordinates using Vector Spherical Harmonics in the angular directions, and Jacobi polynomials together with a mapping in the radial direction. Simulations are performed of a single ring over a wide range of Reynolds numbers (Re approximately equal gamma/nu), 0.001 less than or equal to 1000, and of two interacting rings. At large times, regardless of the early history of the vortex ring, it is observed that the flow approaches a Stokes solution that depends only on the total hydrodynamic impulse, which is conserved for all time. At small times, from an infinitely thin ring, the propagation speeds of vortex rings of varying Re are computed and comparisons are made with the asymptotic theory by Saffman. The results are in agreement with the theory; furthermore, the error is found to be smaller than Saffman's own estimate by a factor square root ((nu x t)/R squared) (at least for Re=0). The error also decreases with increasing Re at fixed core-to-ring radius ratio, and appears to be independent of Re as Re approaches infinity). Following a single ring, with Re=500, the vorticity contours indicate shedding of vorticity into the wake and a settling of an initially circular core to a more elliptical shape, similar to Norbury's steady inviscid vortices. Finally, we consider the case of leapfrogging vortex rings with Re=1000. The results show severe straining of the inner vortex core in the first pass and merging of the two cores during the second pass. Stanaway, S. K. and Cantwell, B. J. and Spalart, Philippe R. Ames Research Center COMPUTATIONAL FLUID DYNAMICS; NAVIER-STOKES EQUATION...


Scientific and Technical Aerospace Reports

Scientific and Technical Aerospace Reports
Author:
Publisher:
Total Pages: 456
Release: 1995
Genre: Aeronautics
ISBN:

Download Scientific and Technical Aerospace Reports Book in PDF, ePub and Kindle

Lists citations with abstracts for aerospace related reports obtained from world wide sources and announces documents that have recently been entered into the NASA Scientific and Technical Information Database.


Vortex Methods

Vortex Methods
Author: Georges-Henri Cottet
Publisher: Cambridge University Press
Total Pages: 0
Release: 2008-04-24
Genre: Science
ISBN: 9780521061704

Download Vortex Methods Book in PDF, ePub and Kindle

Vortex methods have matured in recent years, offering an interesting alternative to finite difference and spectral methods for high resolution numerical solutions of the Navier Stokes equations. In the past three decades, research into the numerical analysis aspects of vortex methods has provided a solid mathematical background for understanding the accuracy and stability of the method. At the same time vortex methods retain their appealing physical character, which was the motivation for their introduction. This book presents and analyzes vortex methods as a tool for the direct numerical simulation of impressible viscous flows. It will interest graduate students and researchers in numerical analysis and fluid mechanics and also serve as an ideal textbook for courses in fluid dynamics.


Full Simulation of a Vortex Ring

Full Simulation of a Vortex Ring
Author: Stanford University. Department of Aeronautics and Astronautics
Publisher:
Total Pages: 46
Release: 1986
Genre:
ISBN:

Download Full Simulation of a Vortex Ring Book in PDF, ePub and Kindle


Vortex Flows and Related Numerical Methods

Vortex Flows and Related Numerical Methods
Author: J.T. Beale
Publisher: Springer Science & Business Media
Total Pages: 385
Release: 2013-04-18
Genre: Technology & Engineering
ISBN: 9401581371

Download Vortex Flows and Related Numerical Methods Book in PDF, ePub and Kindle

Many important phenomena in fluid motion are evident in vortex flow, i.e., flows in which vortical structures are significant in determining the whole flow. This book, which consists of lectures given at a NATO ARW held in Grenoble (France) in June 1992, provides an up-to-date account of current research in the study of these phenomena by means of numerical methods and mathematical modelling. Such methods include Eulerian methods (finite difference, spectral and wavelet methods) as well as Lagrangian methods (contour dynamics, vortex methods) and are used to study such topics as 2- or 3-dimensional turbulence, vorticity generation by solid bodies, shear layers and vortex sheets, and vortex reconnection. For researchers and graduate students in computational fluid dynamics, numerical analysis, and applied mathematics.


Numerical Study on Cut-and-connect of Three Dimensional Vortex Tubes

Numerical Study on Cut-and-connect of Three Dimensional Vortex Tubes
Author: H. L. Chen
Publisher:
Total Pages: 68
Release: 1991
Genre: Vortex motion
ISBN:

Download Numerical Study on Cut-and-connect of Three Dimensional Vortex Tubes Book in PDF, ePub and Kindle

In the present study, generation of two vortex rings and their cut-and-connect process were numerically simulated by solving three-dimensional and time-dependent Navier-Stokes equations, under conditions similar to the laboratory experiment. In order to explain the mechanism of cut-and-connect, velocity, vorticity, pressure, helicity density and energy dissipation were examined for the flow field of the cut-and-connect of vortex rings. The present study revealed that energy dissipation is an essential process for circulation cancellation during vortex tubes cutting. Based on this energy dissipation mechanism, it is concluded that the cut-and-connect of vortex tubes may occur in the limit of inviscid flows. This conclusion is particularly important to the three-dimensional discrete vortex method for computing high Reynolds number flows. Features of helicity in the three-dimensional flow field of cut-and-connect process of vortex tubes were also investigated. The relation between the helicity density and the energy dissipation function in the three-dimensional flow field was examined.


Numerical Simulation of a Viscous Vortex Ring Interaction with a Density Interface

Numerical Simulation of a Viscous Vortex Ring Interaction with a Density Interface
Author:
Publisher:
Total Pages: 18
Release: 1990
Genre:
ISBN:

Download Numerical Simulation of a Viscous Vortex Ring Interaction with a Density Interface Book in PDF, ePub and Kindle

When a vortex-dominated flow interacts with a sharp density interface, the dynamics are characterized by the interaction of baroclinically generated vorticity with the already existing vorticity field. This can be seen in many natural and technology settings; examples are the interaction of a ship or submarine wake with a thermocline, the collision of a buoyant thermal with a temperature inversion, and the interaction of a vortex flow with a flame front. This problem also serves as a generic model for turbulent mixing and entrainment processes across sharp density interfaces. The interaction between vortices and a free surface, with corresponds to the case where the density jump is very large, has been studied fairly extensively, both experimentally and computationally. By comparison, the literature for the more general case of vortex pairs and rings interacting with sharp density interfaces is relatively sparse. Experiments and numerical studies have been performed, but the numerical simulations were confined primarily to vortex pairs, restricted to the inviscid case, and the effect of density variation modeled under the Boussinesq approximation. The experiments were also confined to the Boussinesq regime. In this paper, we study the motion of a vortex ring in a sharply stratified, viscous fluid via a numerical solution of the full Navier-Stokes equations with finite-amplitude density variation. both Boussinesq and non-Boussinesq flow regimes will be studied, the effect of viscosity on the interaction will be examined, and three-dimensional aspects of the motion will be addressed, such as Widnall instability of the vortex ring and vortex reconnection at the interface.