A Non Simultaneous Failure Model For Dynamic Ice Structure Interaction PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Non Simultaneous Failure Model For Dynamic Ice Structure Interaction PDF full book. Access full book title A Non Simultaneous Failure Model For Dynamic Ice Structure Interaction.

Ice-Structure Interaction

Ice-Structure Interaction
Author: Stephen J. Jones
Publisher: Springer Science & Business Media
Total Pages: 724
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 3642841007

Download Ice-Structure Interaction Book in PDF, ePub and Kindle

IUTAM-IAHR Symposium on Ice-Structure Interaction Professor Bez Tabarrok, Chairman of the Canadian National Committee (CNC) of the International Union of Theoretical and Applied Mechanics (IUTAM) invited Professor Derek Muggeridge to organize a symposium on ice structure interaction. Dr. Muggeridge readily agreed and prepared a proposal that was endorsed by the CNC and presented to the General Assembly Meeting of IUTAM for their consideration. This Assembly gave its approval and provided the local organizing committee with the names of individuals who were willing to serve on the Scientific Committee. Dr. Muggeridge became chairman of this committee and Dr. Ian Jordaan became co-chairman of this committee as well as chairman of the local organizing committee. The symposium followed the very successful previous meeting, chaired by Professor P. Tryde in Copenhagen, by ten years. Both symposia uti lized Springer-Verlag to publish their proceedings. The Faculty of En gineering and Applied Science at Memorial University of Newfoundland were particul{lXly pleased to host this prestigious symposium as it marked the twentieth anniversary of its Ocean Engineering Research Centre.


IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics

IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics
Author: J.P. Dempsey
Publisher: Springer Science & Business Media
Total Pages: 479
Release: 2013-04-18
Genre: Science
ISBN: 9401597359

Download IUTAM Symposium on Scaling Laws in Ice Mechanics and Ice Dynamics Book in PDF, ePub and Kindle

This Volume constitutes the Proceedings of the IUTAM Symposium on 'Scaling Laws in Ice Mechanics and Ice Dynamics', held in Fairbanks, Alaska from 13th to 16th of June 2000. Ice mechanics deals with essentially intact ice: in this discipline, descriptions of the motion and deformation of Arctic/ Antarctic and river/lake ice call for the development of physically based constitutive and fracture models over an enormous range in scale: 0.01 m - 10 km. Ice dynamics, on the other hand, deals with the movement of broken ice: descriptions of an aggregate of ice floes call for accurate modeling of momentum transfer through the sea/ice system, again over an enormous range in scale: 1 km (floe scale) - 500 km (basin scale). For ice mechanics, the emphasis on lab-scale (0.01 - 0.5 m) research con trasts with applications at the scale of order 1 km (ice-structure interaction, icebreaking); many important upscaling questions remain to be explored.


Modelling Dynamic Ice-structure Interaction Based on High-pressure Zones' Behaviour at Medium-scale

Modelling Dynamic Ice-structure Interaction Based on High-pressure Zones' Behaviour at Medium-scale
Author: Ridwan Hossain
Publisher:
Total Pages:
Release: 2021
Genre:
ISBN:

Download Modelling Dynamic Ice-structure Interaction Based on High-pressure Zones' Behaviour at Medium-scale Book in PDF, ePub and Kindle

Although ice-induced vibrations (IIV) resulting from dynamic ice-structure interaction have been reported as infrequent occurrences in nature, the catastrophic consequences of these events makes them a fundamental design consideration for structures in ice-prone regions. Over the last 50 years, these events have affected a wide range of structures, including bottom founded lighthouses, channel markers, jacket and caisson retained structures, and have led to operational shutdowns, human discomfort, and even complete collapse of the structure in some cases. Rigorous experimental investigations and theoretical modeling approaches over the years have provided valuable insight into the physical mechanism of the process; however, a significant amount of uncertainty in identifying the conditions associated with IIV and its severity still exists. The primary source of the uncertainty comes from the complexity of the ice failure process, since it is highly influenced by the interplay of different competing mechanisms, such as fracture, damage and microstructural changes. One of the fundamental components of compressive ice failure is the development of 'high-pressure zones (hpzs),' which are responsible for transmitting the majority of the loads in ice-structure interactions. As the properties and dynamic behaviour of hpzs exhibit similar characteristics over a wide range of scales, efforts to link hpz mechanics with the occurrence of dynamic ice-structure interactions is seen as a promising approach. During ice-structure interaction, the ice failure process is highly influenced by different interaction parameters. An uncertainty analysis with self-excited vibration modeling approaches was performed first to identify the critical parameters and how their effects can propagate through the dynamic ice-structure interaction process. Based on the simulations, ice temperature, interaction speed, and interaction area were identified as the key parameters affecting the dynamic ice-structure interaction process. A medium-scale ice crushing dynamics test program was then carried out to study the influence of these parameters on the dynamics of hpzs under controlled conditions with variable structural compliance. In general, more severe dynamics associated with failure behaviour were observed to be more pronounced for colder ice, smaller interaction areas, higher interaction speed, and lower structural compliances. The observed dynamics of a single hpz was then used to develop a simplified ice-structure interaction model. The behaviour of the hpz was estimated using results from previous triaxial tests, which showed a non-linear relationship between hpz stiffness and the nominal strain, with the degree of softening depending on the average strain-rate. Two distinct failure processes were assessed in the context of the periodic sinusoidal response of the structure using the model. First, such responses can result from the vibration within the layer of damaged ice when the formation of the damaged layer and the extrusion process become cyclical in pure crushing. Theoretical calculation from a previous study was adopted to estimate the equilibrium layer thickness that can result in such vibrations, and the model showed reasonably good agreement with the calculations. The other failure process considered was for spall-dominated interactions with occasional crushing events. Such a failure process can result in frequency lock-in of the structure; however, these responses were observed to be highly sensitive to interaction speed and structural parameters. This was identified as the primary reason for the infrequent observation of frequency lock-in in full-scale interactions. Although the simplified modeling framework presented here shows promising results, further experimental investigation and modeling refinement are required for a full-scale implementation.


Mechanics of Ice Failure

Mechanics of Ice Failure
Author: Ian Jordaan
Publisher: Cambridge University Press
Total Pages: 245
Release: 2023-02-28
Genre: Science
ISBN: 1108481604

Download Mechanics of Ice Failure Book in PDF, ePub and Kindle

Featuring real-world examples and practical methodology, this rigorous text combines mechanical theory with design and modelling.


Ice Mechanics for Geophysical and Civil Engineering Applications

Ice Mechanics for Geophysical and Civil Engineering Applications
Author: Ryszard Staroszczyk
Publisher: Springer
Total Pages: 334
Release: 2018-12-29
Genre: Science
ISBN: 3030030385

Download Ice Mechanics for Geophysical and Civil Engineering Applications Book in PDF, ePub and Kindle

This book presents the concepts and tools of ice mechanics, together with examples of their application in the fields of glaciology, climate research and civil engineering in cold regions. It starts with an account of the most important physical properties of sea and polar ice treated as an anisotropic polycrystalline material, and reviews relevant field observations and experimental measurements. The book focuses on theoretical descriptions of the material behaviour of ice in different stress, deformation and deformation-rate regimes on spatial scales ranging from single ice crystals, those typical in civil engineering applications, up to scales of thousands of kilometres, characteristic of large, grounded polar ice caps in Antarctica and Greenland. In addition, it offers a range of numerical formulations based on either discrete (finite-element, finite-difference and smoothed particle hydrodynamics) methods or asymptotic expansion methods, which have been used by geophysicists, theoretical glaciologists and civil engineers to simulate the behaviour of ice in a number of problems of importance to glaciology and civil engineering, and discusses the results of these simulations. The book is intended for scientists, engineers and graduate students interested in mathematical and numerical modelling of a wide variety of geophysical and civil engineering problems involving natural ice.


Theory and Numerical Modelling of Dynamic Ice-structure Interaction for Ice-induced Vibrations

Theory and Numerical Modelling of Dynamic Ice-structure Interaction for Ice-induced Vibrations
Author: Xu Ji
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download Theory and Numerical Modelling of Dynamic Ice-structure Interaction for Ice-induced Vibrations Book in PDF, ePub and Kindle

To sum up, this Van der Pol based model is more powerful than the others in kind by far because of its accurate results, wide applicability and novel physical mechanism behind. Thus, the numerical models produced as part of this research can be helpful in ice failure analysis and in the design of ice-resistant structures.


Mechanics of Creep Brittle Materials 1

Mechanics of Creep Brittle Materials 1
Author: A.C.F. Cocks
Publisher: Springer Science & Business Media
Total Pages: 318
Release: 2012-12-06
Genre: Technology & Engineering
ISBN: 9400911173

Download Mechanics of Creep Brittle Materials 1 Book in PDF, ePub and Kindle

Failure of components which operate in the creep range can result either from the growth of a dominant crack or through the accumulation of 'damage' in the material. Conventional and nuclear power generating plant are generally designed on the basis of continuum failure, with assessment routes providing an indication of the effects of flaws on component performance. Another example where an understanding of creep failure is important is in the design of offshore structures which operate in arctic waters. These structures can be subjected to quite considerable forces by wind-driven ice sheets, which are limited by failure of the ice sheet. Design codes are currently being developed which identify the different mechanisms of failure, ranging from continuum crushing to radial cracking and buckling of the ice sheet. Our final example concerns engineering ceramics, which are currently being considered for use in a wide range of high-temperature applications. A major problem preventing an early adoption of these materials is their brittle response at high stresses, although they can behave in a ductile manner at lower stresses. In each of the above situations an understanding of the processes of fast fracture, creep crack growth and continuum failure is required, and in particular an understanding of the material and structural features that influence the transition from brittle to ductile behaviour. The translation of this information to component design is most advanced for metallic components.