A Measurement Of The Weak Charge Of The Proton Through Parity Violating Electron Scattering Using The Qweak Apparatus PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Measurement Of The Weak Charge Of The Proton Through Parity Violating Electron Scattering Using The Qweak Apparatus PDF full book. Access full book title A Measurement Of The Weak Charge Of The Proton Through Parity Violating Electron Scattering Using The Qweak Apparatus.

A Measurement of the Weak Charge of the Proton Through Parity Violating Electron Scattering Using the Qweak Apparatus

A Measurement of the Weak Charge of the Proton Through Parity Violating Electron Scattering Using the Qweak Apparatus
Author:
Publisher:
Total Pages: 251
Release: 2013
Genre:
ISBN:

Download A Measurement of the Weak Charge of the Proton Through Parity Violating Electron Scattering Using the Qweak Apparatus Book in PDF, ePub and Kindle

After a decade of preparations, the Qweak experiment at Jefferson Lab is making the first direct measurement of the weak charge of the proton, Qp̂_W. This quantity is suppressed in the Standard Model making a good candidate for search for new physics beyond the SM at the TeV scale. Operationally, we measure a small (about -0.200 ppm) parity-violating asymmetry in elastic electron-proton scattering in integrating mode while flipping the helicity of the electrons 1000 times per second. Commissioning took place Fall 2010, and we finished taking data in early summer 2012. This dissertation is based on the data taken on an initial two weeks period (Wien0). It will provide an overview of the Qweak apparatus, description of the data acquisition and analysis software systems, and final analysis and results from the Wien0 data set. The result is a 16% measurement of the parity violating electron-proton scattering asymmetry, A = -0.2788 +/- 0.0348 (stat.) +/- 0.0290 (syst.) ppm at Q2̂ = 0.0250 +/- 0.0006 (GeV)2̂. From this a 21% measurement of the weak charge of the proton, Q_wp̂(msr)= +0.0952 +/- 0.0155 (stat.) +/- 0.0131 (syst.) +/- 0.0015 (theory) is extracted. From this a 2% measurement of the weak mixing angle, sin2̂theta_W(msr)= +0.2328 +/- 0.0039 (stat.) +/- 0.0033 (syst.) +/- 0.0004 (theory) and improved constraints on isoscalar/isovector effective coupling constants of the weak neutral hadronic currents are extracted. These results deviate from the Standard Model by one standard deviation. The Wien0 results are a proof of principle of the Qweak data analysis and a highlight of the road ahead for obtaining full results.


Determination of the Proton's Weak Charge Via Parity Violating Electron Scattering

Determination of the Proton's Weak Charge Via Parity Violating Electron Scattering
Author:
Publisher:
Total Pages: 202
Release: 2015
Genre:
ISBN:

Download Determination of the Proton's Weak Charge Via Parity Violating Electron Scattering Book in PDF, ePub and Kindle

The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q2=0.025 (GeV/c)2 in order to provide the first direct measurement of the proton's weak charge, Qpw. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q2 enables a theoretically clean measurement; the higher order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.


Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic E+p Scattering

Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic E+p Scattering
Author:
Publisher:
Total Pages:
Release: 2014
Genre:
ISBN:

Download Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic E+p Scattering Book in PDF, ePub and Kindle

The Qweak experiment has taken data to make a 2.5% measurement of parity violating elastic e+p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)^2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin^2(theta_W). The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z^0 pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation. The experiment was carried out using a longitudinally polarized electron beam of up to 180 microampere on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb - May 2011, is done to extract a blinded parity violating asymmetry of size -299.7 " 13.4 (stat.) " 17.2 (syst.) " 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 " 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin^2(theta_W) = 0.23429 " 0.00211.


The Weak Charge of the Proton

The Weak Charge of the Proton
Author: Scott James MacEwan
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:

Download The Weak Charge of the Proton Book in PDF, ePub and Kindle

The Qweak experiment will provide the most precise determination of the proton's weak charge Q^p_W by measuring the parity-violating asymmetry in elastic electron-proton scattering at low momentum transfer Q^2 = 0.0250 (GeV/c)^2. Qpw is related to the weak mixing angle sin^2\theta_W, a fundamental parameter of the standard model. A final measurement of the weak charge at the proposed 4% relative uncertainty is sensitive to certain types of new parity-violating physics beyond the standard model at the TeV mass-scale. Data were taken over a two year period beginning in 2010, using a custom apparatus installed in Hall-C at the Thomas Jefferson National Accelerator Facility in Newport News, Virginia. A 180 microamp beam of longitudinally polarized electrons was accelerated to 1.165 GeV and then scattered from unpolarized protons in a liquid hydrogen target. The scattered electrons were then collimated and steered using a magnetic spectrometer onto a set of azimuthally symmetric quartz bar Cherenkov detectors. The performance of this main detector subsystem will be described in detail in this dissertation. A blinded analysis of Run-II, roughly 2/3 of the entire Qweak data set, resulted in an elastic ep asymmetry of -235.6 +/- 8.7 (Stat) +/- 9.3 (Syst.) +/- 39.3 (Blind) ppb. Using this value, the proton's weak charge was calculated to be QpW = 0.0714 +/- 0.0093. This constitutes a 17% relative measurement, that will reduce to


Q Weak

Q Weak
Author:
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

Download Q Weak Book in PDF, ePub and Kindle

The Qweak experiment, which took data at Jefferson Lab in the period 2010 - 2012, will precisely determine the weak charge of the proton by measuring the parity-violating asymmetry in elastic e-p scattering at 1.1 GeV using a longitudinally polarized electron beam and a liquid hydrogen target at a low momentum transfer of Q2 = 0.025 (GeV/c)2. The weak charge of the proton is predicted by the Standard Model and any significant deviation would indicate physics beyond the Standard Model. The technical challenges and experimental apparatus for measuring the weak charge of the proton will be discussed, as well as the method of extracting the weak charge of the proton. Finally, the results from a small subset of the data, that has been published, will also be presented. Furthermore an update will be given of the current status of the data analysis.


Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic E+p Scattering

Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic E+p Scattering
Author: Adesh Subedi
Publisher:
Total Pages: 269
Release: 2014
Genre:
ISBN:

Download Determination of the Weak Charge of the Proton Through Parity Violating Asymmetry Measurements in the Elastic E+p Scattering Book in PDF, ePub and Kindle

The Qweak experiment has taken data to make a 2.5 percent measurement of parity violating elastic e + p asymmetry in the four momentum transfer region of 0.0250 (GeV/c)2. This asymmetry is proportional to the weak charge of the proton, which is related to the weak mixing angle, sin2 (thetaW). The final Qweak measurement will provide the most precise measurement of the weak mixing angle below the Z _ pole to test the Standard Model prediction. A description of the experimental apparatus is provided in this dissertation.The experiment was carried out using a longitudinally polarized electron beam of up to 180 microampere on a 34.5 cm long unpolarized liquid hydrogen target. The Qweak target is not only the world's highest cryogenic target ever built for a parity experiment but also is the least noisy target. This dissertation provides a detailed description of this target and presents a thorough analysis of the target performance. Statistical analysis of Run 1 data, collected between Feb - May 2011, is done to extract a blinded parity violating\ asymmetry of size 299.7 +/- 13.4 (stat.) +/- 17.2 (syst.) +/- 68 (blinding) parts-per-billion. This resulted in a preliminary proton's weak charge of value 0.0865 +/- 0.0085, a 9% measurement. Based on this blinded asymmetry, the weak mixing angle was determined to be sin2 (thetaW) = 0.23429 +/- 0.00211.


Measuring the Weak Charge of the Proton Via Elastic Electron-Proton Scattering

Measuring the Weak Charge of the Proton Via Elastic Electron-Proton Scattering
Author:
Publisher:
Total Pages: 251
Release: 2015
Genre:
ISBN:

Download Measuring the Weak Charge of the Proton Via Elastic Electron-Proton Scattering Book in PDF, ePub and Kindle

The Qweak experiment which ran in Hall C at Jefferson Lab in Newport News, VA, and completed data taking in May 2012, measured the weak charge of the proton QpW via elastic electron-proton scattering. Longitudinally polarized electrons were scattered from an unpolarized liquid hydrogen target. The helicity of the electron beam was flipped at approximately 1 kHz between left and right spin states. The Standard Model predicts a small parity-violating asymmetry of scattering rates between right and left helicity states due to the weak interaction. An initial result using 4% of the data was published in October 2013 [1] with a measured parity-violating asymmetry of -279 ± 35(stat) ± 31 (syst) ppb. This asymmetry, along with other data from parity-violating electron scattering experiments, provided the world's first determination of the weak charge of the proton. The weak charge of the proton was found to be pW = 0.064 ± 0.012, in good agreement with the Standard Model prediction of pW(SM) = 0.0708 ± 0.0003[2].


The Weak Charge of the Proton

The Weak Charge of the Proton
Author:
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download The Weak Charge of the Proton Book in PDF, ePub and Kindle

The Qweak experiment, which completed running in May of 2012 at Jefferson Laboratory, has measured the parity-violating asymmetry in elastic electron-proton scattering at four-momentum transfer Q^2=0.025 (GeV/c)^2 in order to provide the first direct measurement of the proton?s weak charge, Qpw. The Standard Model makes firm predictions for the weak charge; deviations from the predicted value would provide strong evidence of new physics beyond the Standard Model. Using an 89% polarized electron beam at 145 microA scattering from a 34.4 cm long liquid hydrogen target, scattered electrons were detected using an array of eight fused-silica detectors placed symmetric about the beam axis. The parity-violating asymmetry was then measured by reversing the helicity of the incoming electrons and measuring the normalized difference in rate seen in the detectors. The low Q^2 enables a theoretically clean measurement; the higher order hadronic corrections are constrained using previous parity-violating electron scattering world data. The experimental method will be discussed, with recent results constituting 4% of our total data and projections of our proposed uncertainties on the full data set.


The Qweak Experiment

The Qweak Experiment
Author:
Publisher:
Total Pages:
Release: 2015
Genre:
ISBN:

Download The Qweak Experiment Book in PDF, ePub and Kindle

The $Q_{weak}$ Collaboration has completed a challenging measurement of the parity-violating asymmetry in elastic electron-proton ($\vec{e}$p) scattering at the Thomas Jefferson National Accelerator Facility (Jefferson Lab). The initial result reported here is extracted from the commissioning part of the experiment, constituting about 4% of the full data set. The parity-violating asymmetry at a low momentum transfer $Q^2$=0.025 GeV$^2$ is $A_{ep}$ = -279 $\pm$ 35 (stat) $\pm$ 31 (syst) ppb, which is the smallest and most precise asymmetry ever measured in $\vec{e}$p scattering. This result allowed the first determination of the weak charge of the proton $Q_W^p$ from a global fit of parity-violating elastic scattering (PVES) results from nuclear targets, where earlier data at higher $Q^2$ constrain uncertainties of hadronic structure. The value extracted from the global fit is $Q_W^p$ (PVES) = 0.064 $\pm$ 0.012, in agreement with the standard model prediction $Q_W^p$ (SM) = 0.0710 $\pm$ 0.0007. The neutral weak charges of up and down quarks are extracted from a combined fit of the PVES results with a previous atomic parity violation (APV) measurement on $^$Cs. The analysis of the full $Q_{weak}$ data is ongoing and expected to yield a value for the asymmetry within 10 ppb of precision. Because of the suppression of $Q_W^p$, such a high precision measurement will place significant constraints to models of physics beyond the standard model.