A Discontinuous Galerkin Method For The Solution Of Compressible Flows PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download A Discontinuous Galerkin Method For The Solution Of Compressible Flows PDF full book. Access full book title A Discontinuous Galerkin Method For The Solution Of Compressible Flows.

Discontinuous Galerkin Method

Discontinuous Galerkin Method
Author: Vít Dolejší
Publisher: Springer
Total Pages: 575
Release: 2015-07-17
Genre: Mathematics
ISBN: 3319192671

Download Discontinuous Galerkin Method Book in PDF, ePub and Kindle

The subject of the book is the mathematical theory of the discontinuous Galerkin method (DGM), which is a relatively new technique for the numerical solution of partial differential equations. The book is concerned with the DGM developed for elliptic and parabolic equations and its applications to the numerical simulation of compressible flow. It deals with the theoretical as well as practical aspects of the DGM and treats the basic concepts and ideas of the DGM, as well as the latest significant findings and achievements in this area. The main benefit for readers and the book’s uniqueness lie in the fact that it is sufficiently detailed, extensive and mathematically precise, while at the same time providing a comprehensible guide through a wide spectrum of discontinuous Galerkin techniques and a survey of the latest efficient, accurate and robust discontinuous Galerkin schemes for the solution of compressible flow.


Discontinuous Galerkin Methods

Discontinuous Galerkin Methods
Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642597211

Download Discontinuous Galerkin Methods Book in PDF, ePub and Kindle

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.


A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries

A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries
Author: Stephan Krämer-Eis
Publisher: Cuvillier Verlag
Total Pages: 128
Release: 2017-10-20
Genre: Technology & Engineering
ISBN: 3736986351

Download A high-order discontinuous Galerkin method for unsteady compressible flows with immersed boundaries Book in PDF, ePub and Kindle

Um die komplexe Physik in kompressiblen Strömungen genauer zu verstehen, kommen vermehrt Simulationen zum Einsatz. Jedoch können weit verbreitete kommerzielle Softwarepakete die Physik aufgrund ihrer niedrigen Genauigkeit oft nicht korrekt erfassen. In dieser Arbeit wird eine diskontinuierliche Galerkin Methode mit hoher Ordnung entwickelt, welche eine hohe Genauigkeit erzielt. Dabei werden insbesondere zwei Probleme, die im Kontext von Verfahren mit hoher Ordnung auftreten, behandelt. Zum einen wird die Gittergenerierung durch das Verwenden einer Immersed Boundary Methode deutlich vereinfacht. Dies bedeutet, dass die Problemgeometrie aus einem deutlich einfacheren Hintergrundgitter herausgeschnitten wird. Die Geometrie wird mit Hilfe einer Level-Set Funktion dargestellt, und die Integration auf den entstehenden geschnittenen Zellen wird mittels einer hierarchischen Moment-Fitting Quadratur durchgeführt. Das Problem der sehr kleinen oder stark gekrümmten Zellen wird durch Zellagglomeration gelöst. Zum zweiten wird die starke Zeitschrittbeschränkung durch anisotrope Gitter mit Hilfe eines lokalen Zeitschrittverfahrens behoben. Diverse numerische Experimente bestätigen die hohe Genauigkeit, Effizienz und geometrische Flexibilität der vorgestellten Methode.


A Parallel Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Aritrary Grids

A Parallel Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Aritrary Grids
Author:
Publisher:
Total Pages:
Release: 2010
Genre:
ISBN:

Download A Parallel Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Aritrary Grids Book in PDF, ePub and Kindle

A reconstruction-based discontinuous Galerkin method is presented for the solution of the compressible Navier-Stokes equations on arbitrary grids. In this method, an in-cell reconstruction is used to obtain a higher-order polynomial representation of the underlying discontinuous Galerkin polynomial solution and an inter-cell reconstruction is used to obtain a continuous polynomial solution on the union of two neighboring, interface-sharing cells. The in-cell reconstruction is designed to enhance the accuracy of the discontinuous Galerkin method by increasing the order of the underlying polynomial solution. The inter-cell reconstruction is devised to remove an interface discontinuity of the solution and its derivatives and thus to provide a simple, accurate, consistent, and robust approximation to the viscous and heat fluxes in the Navier-Stokes equations. A parallel strategy is also devised for the resulting reconstruction discontinuous Galerkin method, which is based on domain partitioning and Single Program Multiple Data (SPMD) parallel programming model. The RDG method is used to compute a variety of compressible flow problems on arbitrary meshes to demonstrate its accuracy, efficiency, robustness, and versatility. The numerical results demonstrate that this RDG method is third-order accurate at a cost slightly higher than its underlying second-order DG method, at the same time providing a better performance than the third order DG method, in terms of both computing costs and storage requirements.


High-order Hybridizable Discontinuous Galerkin Method for Viscous Compressible Flows

High-order Hybridizable Discontinuous Galerkin Method for Viscous Compressible Flows
Author: Mostafa Javadzadeh Moghtader
Publisher:
Total Pages: 125
Release: 2017
Genre:
ISBN:

Download High-order Hybridizable Discontinuous Galerkin Method for Viscous Compressible Flows Book in PDF, ePub and Kindle

Computational Fluid Dynamics (CFD) is an essential tool for engineering design and analysis, especially in applications like aerospace, automotive and energy industries. Nowadays most commercial codes are based on Finite Volume (FV) methods, which are second order accurate, and simulation of viscous compressible flow around complex geometries is still very expensive due to large number of low-order elements required. One the other hand, some sophisticated physical phenomena, like aeroacoustics, vortex dominated flows and turbulence, need very high resolution methods to obtain accurate results. High-order methods with their low spatial discretization errors, are a possible remedy for shortcomings of the current CFD solvers. Discontinuous Galerkin (DG) methods have emerged as a successful approach for non-linear hyperbolic problems and are widely regarded very promising for next generation CFD solvers. Their efficiency for high-order discretization makes them suitable for advanced physical models like DES and LES, while their stability in convection dominated regimes is also a merit of them. The compactness of DG methods, facilitate the parallelization and their element-by-element discontinuous nature is also helpful for adaptivity. This PhD thesis focuses on the development of an efficient and robust high-order Hybridizable Discontinuous Galerkin (HDG) Finite Element Method (FEM) for compressible viscous flow computations. HDG method is a new class of DG family which enjoys from merits of DG but has significantly less globally coupled unknowns compared to other DG methods. Its features makes HDG a possible candidate to be investigated as next generation high-order tools for CFD applications. The first part of this thesis recalls the basics of high-order HDG method. It is presented for the two-dimensional linear convection-diffusion equation, and its accuracy and features are investigated. Then, the method is used to solve compressible viscous flow problems modelled by non-linear compressible Navier-Stokes equations; and finally a new linearized HDG formulation is proposed and implemented for that problem, all using high-order approximations. The accuracy and efficiency of high-order HDG method to tackle viscous compressible flow problems is investigated, and both steady and unsteady solvers are developed for this purpose. The second part is the core of this thesis, proposing a novel shock-capturing method for HDG solution of viscous compressible flow problems, in the presence of shock waves. The main idea is to utilize the stabilization of numerical fluxes, via a discontinuous space of approximation inside the elements, to diminish or remove the oscillations in the vicinity of discontinuity. This discontinuous nodal basis functions, leads to a modified weak form of the HDG local problem in the stabilized elements. First, the method is applied to convection-diffusion problems with Bassi-Rebay and LDG fluxes inside the elements, and then, the strategy is extended to the compressible Navier-Stokes equations using LDG and Lax-Friedrichs fluxes. Various numerical examples, for both convection-diffusion and compressible Navier-Stokes equations, demonstrate the ability of the proposed method, to capture shocks in the solution, and its excellent performance in eliminating oscillations is the vicinity of shocks to obtain a spurious-free high-order solution.


A Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Unstructured Tetrahedral Grids

A Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Unstructured Tetrahedral Grids
Author:
Publisher:
Total Pages:
Release: 2011
Genre:
ISBN:

Download A Reconstructed Discontinuous Galerkin Method for the Compressible Flows on Unstructured Tetrahedral Grids Book in PDF, ePub and Kindle

A reconstruction-based discontinuous Galerkin (RDG) method is presented for the solution of the compressible Navier-Stokes equations on unstructured tetrahedral grids. The RDG method, originally developed for the compressible Euler equations, is extended to discretize viscous and heat fluxes in the Navier-Stokes equations using a so-called inter-cell reconstruction, where a smooth solution is locally reconstructed using a least-squares method from the underlying discontinuous DG solution. Similar to the recovery-based DG (rDG) methods, this reconstructed DG method eliminates the introduction of ad hoc penalty or coupling terms commonly found in traditional DG methods. Unlike rDG methods, this RDG method does not need to judiciously choose a proper form of a recovered polynomial, thus is simple, flexible, and robust, and can be used on unstructured grids. The preliminary results indicate that this RDG method is stable on unstructured tetrahedral grids, and provides a viable and attractive alternative for the discretization of the viscous and heat fluxes in the Navier-Stokes equations.


Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids

Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids
Author: Wanai Li
Publisher: Springer
Total Pages: 158
Release: 2014-05-23
Genre: Technology & Engineering
ISBN: 3662434326

Download Efficient Implementation of High-Order Accurate Numerical Methods on Unstructured Grids Book in PDF, ePub and Kindle

This thesis focuses on the development of high-order finite volume methods and discontinuous Galerkin methods, and presents possible solutions to a number of important and common problems encountered in high-order methods, such as the shock-capturing strategy and curved boundary treatment, then applies these methods to solve compressible flows.


High-Order Methods for Computational Physics

High-Order Methods for Computational Physics
Author: Timothy J. Barth
Publisher: Springer Science & Business Media
Total Pages: 594
Release: 2013-03-09
Genre: Mathematics
ISBN: 366203882X

Download High-Order Methods for Computational Physics Book in PDF, ePub and Kindle

The development of high-order accurate numerical discretization techniques for irregular domains and meshes is often cited as one of the remaining chal lenges facing the field of computational fluid dynamics. In structural me chanics, the advantages of high-order finite element approximation are widely recognized. This is especially true when high-order element approximation is combined with element refinement (h-p refinement). In computational fluid dynamics, high-order discretization methods are infrequently used in the com putation of compressible fluid flow. The hyperbolic nature of the governing equations and the presence of solution discontinuities makes high-order ac curacy difficult to achieve. Consequently, second-order accurate methods are still predominately used in industrial applications even though evidence sug gests that high-order methods may offer a way to significantly improve the resolution and accuracy for these calculations. To address this important topic, a special course was jointly organized by the Applied Vehicle Technology Panel of NATO's Research and Technology Organization (RTO), the von Karman Institute for Fluid Dynamics, and the Numerical Aerospace Simulation Division at the NASA Ames Research Cen ter. The NATO RTO sponsored course entitled "Higher Order Discretization Methods in Computational Fluid Dynamics" was held September 14-18,1998 at the von Karman Institute for Fluid Dynamics in Belgium and September 21-25,1998 at the NASA Ames Research Center in the United States.