2016 Accomplishments Tritium Aging Studies On Stainless Steel Forging Process Effects On The Fracture Toughness Properties Of Tritium Precharged Stainless Steel PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download 2016 Accomplishments Tritium Aging Studies On Stainless Steel Forging Process Effects On The Fracture Toughness Properties Of Tritium Precharged Stainless Steel PDF full book. Access full book title 2016 Accomplishments Tritium Aging Studies On Stainless Steel Forging Process Effects On The Fracture Toughness Properties Of Tritium Precharged Stainless Steel.

2016 Accomplishments. Tritium Aging Studies on Stainless Steel. Forging Process Effects on the Fracture Toughness Properties of Tritium-precharged Stainless Steel

2016 Accomplishments. Tritium Aging Studies on Stainless Steel. Forging Process Effects on the Fracture Toughness Properties of Tritium-precharged Stainless Steel
Author:
Publisher:
Total Pages: 29
Release: 2017
Genre:
ISBN:

Download 2016 Accomplishments. Tritium Aging Studies on Stainless Steel. Forging Process Effects on the Fracture Toughness Properties of Tritium-precharged Stainless Steel Book in PDF, ePub and Kindle

Forged austenitic stainless steels are used as the materials of construction for pressure vessels designed to contain tritium at high pressure. These steels are highly resistant to tritium-assisted fracture but their resistance can depend on the details of the forging microstructure. During FY16, the effects of forging strain rate and deformation temperature on the fracture toughness properties of tritium-exposed-and-aged Type 304L stainless steel were studied. Forgings were produced from a single heat of steel using four types of production forging equipment - hydraulic press, mechanical press, screw press, and high-energy-rate forging (HERF). Each machine imparted a different nominal strain rate during the deformation. The objective of the study was to characterize the J-Integral fracture toughness properties as a function of the industrial strain rate and temperature. The second objective was to measure the effects of tritium and decay helium on toughness. Tritium and decay helium effects were measured by thermally precharging the as-forged specimens with tritium gas at 34.5 MPa and 350°C and aging for up to five years at -80°C to build-in decay helium prior to testing. The results of this study show that the fracture toughness properties of the as-forged steels vary with forging strain rate and forging temperature. The effect is largely due to yield strength as the higher-strength forgings had the lower toughness values. For non-charged specimens, fracture toughness properties were improved by forging at 871°C versus 816°C and Screw-Press forgings tended to have lower fracture toughness values than the other forgings. Tritium exposures reduced the fracture toughness values remarkably to fracture toughness values averaging 10-20% of as-forged values. However, forging strain rate and temperature had little or no effect on the fracture toughness after tritium precharging and aging. The result was confirmed by fractography which indicated that fracture modes in the tritium-exposed specimens were similar for all forgings. Another FY16 objective was to prepare fracture toughness specimens from Types 304L and 21-6-9 stainless steel weldments and heat-affected zones (HAZ) for tritium charging.


TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS.

TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS.
Author:
Publisher:
Total Pages:
Release: 2009
Genre:
ISBN:

Download TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF STAINLESS STEEL BASE METAL AND WELDS. Book in PDF, ePub and Kindle

Tritium reservoirs are constructed from welded stainless steel forgings. While these steels are highly resistant to the embrittling effects of hydrogen isotopes and helium from tritium decay; they are not immune. Tritium embrittlement is an enhanced form of hydrogen embrittlement because of the presence of helium-3 from tritium decay which nucleates as nanometer-sized bubbles on dislocations, grain boundaries, and other microstructural defects. Steels with decay helium bubble microstructures are hardened and less able to deform plastically and become more susceptible to embrittlement by hydrogen and its isotopes. Ductility, elongation-to-failure, and fracture toughness are reduced by exposures to tritium and the reductions increase with time as helium-3 builds into the material from tritium permeation and radioactive decay. Material and forging specifications have been developed for optimal material compatibility with tritium. These specifications cover composition, mechanical properties, and select microstructural characteristics like grain size, flow-line orientation, inclusion content, and ferrite distribution. For many years, the forming process of choice for reservoir manufacturing was high-energy-rate forging (HERF), principally because the DOE forging facility owned only HERF hammers. Today, some reservoir forgings are being made that use a conventional, more common process known as press forging (PF or CF). One of the chief differences between the two forging processes is strain rate: Conventional hydraulic or mechanical forging presses deform the metal at 4-8 ft/s, about ten-fold slower than the HERF process. The material specifications continue to provide successful stockpile performance by ensuring that the two forging processes produce similar reservoir microstructures. While long-term life storage tests have demonstrated the general tritium compatibility of tritium reservoirs, fracture-toughness properties of both conventionally forged and high-energy-rate forged are needed for designing and establishing longer tritium-reservoir lifetimes, ranking materials, and, potentially, for qualifying new forging vendors or processes. Measurements on the effects of tritium and decay helium on the fracture toughness properties of CF stainless steels having similar composition, grain size, and mechanical properties to previously studied HERF steels are needed and have not been conducted until now. The compatibility of stainless steel welds with tritium represents another concern for long-term reservoir performance. Weldments have not been well-characterized with respect to tritium embrittlement, although a recent study was completed on the effect of tritium and decay helium on the fracture toughness properties of Type 304L weldments. This study expands the characterization of weldments through measurements of tritium and decay helium effects on the fracture toughness properties of Type 21-6-9 stainless steel. The purpose of this study was to measure and compare the fracture toughness properties of Type 21-6-9 stainless steel for conventional forgings and weldments in the non-charged, hydrogen-charged and tritium-charged-and-aged conditions.


TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL.

TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL.
Author:
Publisher:
Total Pages:
Release: 2008
Genre:
ISBN:

Download TRITIUM AGING EFFECTS ON THE FRACTURE TOUGHNESS PROPERTIES OF FORGED STAINLESS STEEL. Book in PDF, ePub and Kindle

The fracture toughness properties of Type 21-6-9 stainless steel were measured for forgings in the unexposed, hydrogen-exposed, and tritium-exposed-and-aged conditions. Fracture toughness samples were cut from conventionally-forged and high-energy-rate-forged forward-extruded cylinders and mechanically tested at room temperature using ASTM fracture-toughness testing procedures. Some of the samples were exposed to either hydrogen or tritium gas (340 MPa, 623 K) prior to testing. Tritium-exposed samples were aged for up to seven years and tested periodically in order to measure the effect on fracture toughness of 3He from radioactive tritium decay. The results show that hydrogen-exposed and tritium-exposed samples had lower fracture- toughness values than unexposed samples and that fracture toughness decreased with increasing decay 3He content. Forged steels were more resistant to the embrittling effects of tritium and decay 3He than annealed steels, although their fracture-toughness properties depended on the degree of sensitization that occurred during processing. The fracture process was dominated by microvoid nucleation, growth and coalescence; however, the size and spacing of microvoids on the fracture surfaces were affected by hydrogen and tritium with the lowest-toughness samples having the smallest microvoids and finest spacing.


2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS.

2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS.
Author:
Publisher:
Total Pages:
Release: 2013
Genre:
ISBN:

Download 2012 ACCOMPLISHMENTS - TRITIUM AGING STUDIES ON STAINLESS STEELS. Book in PDF, ePub and Kindle

This report summarizes the research and development accomplishments during FY12 for the tritium effects on materials program. The tritium effects on materials program is designed to measure the long-term effects of tritium and its radioactive decay product, helium-3, on the structural properties of forged stainless steels which are used as the materials of construction for tritium reservoirs. The FY12 R & D accomplishments include: (1) Fabricated and Thermally-Charged 150 Forged Stainless Steel Samples with Tritium for Future Aging Studies; (2) Developed an Experimental Plan for Measuring Cracking Thresholds of Tritium-Charged-and-Aged Steels in High Pressure Hydrogen Gas; (3) Calculated Sample Tritium Contents For Laboratory Inventory Requirements and Environmental Release Estimates; (4) Published report on "Cracking Thresholds and Fracture Toughness Properties of Tritium-Charged-and-Aged Stainless Steels"; and, (5) Published report on "The Effects of Hydrogen, Tritium, and Heat Treatment on the Deformation and Fracture Toughness Properties of Stainless Steels". These accomplishments are highlighted here and references given to additional reports for more detailed information.


TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS.

TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS.
Author: M. Morgan
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

Download TRITIUM EFFECTS ON WELDMENT FRACTURE TOUGHNESS. Book in PDF, ePub and Kindle

The effects of tritium on the fracture toughness properties of Type 304L stainless steel and its weldments were measured. Fracture toughness data are needed for assessing tritium reservoir structural integrity. This report provides data from J-Integral fracture toughness tests on unexposed and tritium-exposed weldments. The effect of tritium on weldment toughness has not been measured until now. The data include tests on tritium-exposed weldments after aging for up to three years to measure the effect of increasing decay helium concentration on toughness. The results indicate that Type 304L stainless steel weldments have high fracture toughness and are resistant to tritium aging effects on toughness. For unexposed alloys, weldment fracture toughness was higher than base metal toughness. Tritium-exposed-and-aged base metals and weldments had lower toughness values than unexposed ones but still retained good toughness properties. In both base metals and weldments there was an initial reduction in fracture toughness after tritium exposure but little change in fracture toughness values with increasing helium content in the range tested. Fracture modes occurred by the dimpled rupture process in unexposed and tritium-exposed steels and welds. This corroborates further the resistance of Type 304L steel to tritium embrittlement. This report fulfills the requirements for the FY06 Level 3 milestone, TSR15.3 ''Issue summary report for tritium reservoir material aging studies'' for the Enhanced Surveillance Campaign (ESC). The milestone was in support of ESC L2-1866 Milestone-''Complete an annual Enhanced Surveillance stockpile aging assessment report to support the annual assessment process''.


EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS.

EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS.
Author: M. Morgan
Publisher:
Total Pages:
Release: 2006
Genre:
ISBN:

Download EFFECT OF TRITIUM AND DECAY HELIUM ON WELDMENT FRACTURE TOUGHNESS. Book in PDF, ePub and Kindle

The fracture toughness data collected in this study are needed to assess the long-term effects of tritium and its decay product on tritium reservoirs. The results show that tritium and decay helium have negative effects on the fracture toughness properties of stainless steel and its weldments. The data and report from this study has been included in a material property database for use in tritium reservoir modeling efforts like the Technology Investment Program ''Lifecycle Engineering for Tritium Reservoirs''. A number of conclusions can be drawn from the data: (1) For unexposed Type 304L stainless steel, the fracture toughness of weldments was two to three times higher than the base metal toughness. (2) Tritium exposure lowered the fracture toughness properties of both base metals and weldments. This was characterized by lower J{sub Q} values and lower J-da curves. (3) Tritium-exposed-and-aged base metals and weldments had lower fracture toughness values than unexposed ones but still retained good toughness properties.


Microstructure and Yield Strength Effects on Hydrogen and Tritium Induced Cracking in HERF (high-energy-rate-forged) Stainless Steel

Microstructure and Yield Strength Effects on Hydrogen and Tritium Induced Cracking in HERF (high-energy-rate-forged) Stainless Steel
Author:
Publisher:
Total Pages: 38
Release: 1989
Genre:
ISBN:

Download Microstructure and Yield Strength Effects on Hydrogen and Tritium Induced Cracking in HERF (high-energy-rate-forged) Stainless Steel Book in PDF, ePub and Kindle

Rising-load J-integral measurements and falling-load threshold stress intensity measurements were used to characterize hydrogen and tritium induced cracking in high-energy-rate-forged (HERF) 21-6-9 stainless steel. Samples having yield strengths in the range 517--930 MPa were thermally charged with either hydrogen or tritium and tested at room temperature in either air or high-pressure hydrogen gas. In general, the hydrogen isotopes reduced the fracture toughness by affecting the fracture process. Static recrystallization in the HERF microstructures affected the material's fracture toughness and its relative susceptibility to hydrogen and tritium induced fracture. In hydrogen-exposed samples, the reduction in fracture toughness was primarily dependent on the susceptibility of the microstructure to intergranular fracture and only secondarily affected by strength in the range of 660 to 930 MPa. Transmission-electron microscopy observations revealed that the microstructures least susceptible to hydrogen-induced intergranular cracking contained patches of fully recrystallized grains. These grains are surrounded by highly deformed regions containing a high number density of dislocations. The microstructure can best be characterized as duplex'', with soft recrystallized grains embedded in a hard, deformed matrix. The microstructures most susceptible to hydrogen-induced intergranular fracture showed no well-developed recrystallized grains. The patches of recrystallized grains seemed to act as crack barriers to hydrogen-induced intergranular fracture. In tritium-exposed-and-aged samples, the amount of static recrystallization also affected the fracture toughness properties but to a lesser degree. 7 refs., 25 figs.


Microstructure and Yield Strength Effects on Hydrogen-and-tritium-induced Cracking in 21-6-9 Stainless Steel

Microstructure and Yield Strength Effects on Hydrogen-and-tritium-induced Cracking in 21-6-9 Stainless Steel
Author:
Publisher:
Total Pages: 28
Release: 1989
Genre:
ISBN:

Download Microstructure and Yield Strength Effects on Hydrogen-and-tritium-induced Cracking in 21-6-9 Stainless Steel Book in PDF, ePub and Kindle

High-energy-rate-forged (HERF) austenitic stainless steels are used for the containment of hydrogen and its isotopes. Embrittlement of these materials by hydrogen has been a source of concern for some time. The nature and the degree of embrittlement by hydrogen varies considerably and, among other factors, is a complicated function of material composition and processing variations. Helium, the radioactive decay product of tritium, will also embrittle stainless steels. Precipitation of microscopic helium bubbles tends to increase the material's flow stress, through dislocation pinning, as well as weaken interfaces like grain and twin boundaries. Since fracture toughness tends to decrease with increasing yield strength, at least part of the helium-embrittlement problem may be due to strength effects. The relationship between a material's yield strength and toughness and, the incremental strength increase and corresponding toughness decrease imparted by helium is not known. The purpose of this study was to measure the combined effects of strength, hydrogen isotopes, and helium on the room temperature mechanical and fracture toughness properties of HERF 21-6-9 stainless steel.


Effect of Long-term Thermal Aging on the Fracture Toughness of Austenitic Stainless Steel Base and Weld Metals

Effect of Long-term Thermal Aging on the Fracture Toughness of Austenitic Stainless Steel Base and Weld Metals
Author:
Publisher:
Total Pages: 128
Release: 1995
Genre:
ISBN:

Download Effect of Long-term Thermal Aging on the Fracture Toughness of Austenitic Stainless Steel Base and Weld Metals Book in PDF, ePub and Kindle

Compact tension specimens taken from FFTF primary piping materials (Type 316 stainless steel (SS) and 16-8-2 SS weld metal) and from reactor vessel materials (304 SS and 308 SS weld metal) were heated in laboratory furnaces from 100,000 hours. Fracture toughness testing was performed on these specimens, which are 7.62- and 25.4-mm thick, respectively at the aging temperature (482 and 427 degrees). Results were analyzed with the multiple-specimen method. Thermal aging continues to reduce the fracture toughness of FFTF component materials. Results show that thermal aging has a strong effect on the toughness degradation of weld metals, particularly for 16-8-2 SS weld whose aged/unaged Jc ratio is only 0.31 after 100,000-hour aging. The fracture toughness of the 308 and 16-8-2 SS weld metals fluctuated during 20,000 to 50,000-hour aging but deteriorated as the aging time increased to 100,000 hours; the toughness degradation is significant. Fracture control based on a fracture mechanics approach should be considered.


Tritium and Decay Helium Effects on Cracking Thresholds and Velocities in Stainless Steel

Tritium and Decay Helium Effects on Cracking Thresholds and Velocities in Stainless Steel
Author:
Publisher:
Total Pages:
Release: 1999
Genre:
ISBN:

Download Tritium and Decay Helium Effects on Cracking Thresholds and Velocities in Stainless Steel Book in PDF, ePub and Kindle

In this study, crack initiation and propagation was studied in tritium-exposed Type 21-6-9 stainless steel. The goal of the study was to use a falling load technique to measure the threshold stress intensity for cracking and the crack growth rates as a function of helium concentration.