Toward The Improved Simulation Of Microscale Gas Flow PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Toward The Improved Simulation Of Microscale Gas Flow PDF full book. Access full book title Toward The Improved Simulation Of Microscale Gas Flow.

Rarefied Gas Dynamics

Rarefied Gas Dynamics
Author: Ching Shen
Publisher: Springer Science & Business Media
Total Pages: 406
Release: 2006-03-30
Genre: Science
ISBN: 3540272305

Download Rarefied Gas Dynamics Book in PDF, ePub and Kindle

Aerodynamics is a science engaged in the investigation of the motion of air and other gases and their interaction with bodies, and is one of the most important bases of the aeronautic and astronautic techniques. The continuous improvement of the configurations of the airplanes and the space vehicles aid the constant enhancement of their performances are closely related with the development of the aerodynamics. In the design of new flying vehicles the aerodynamics will play more and more important role. The undertakings of aeronautics and astronautics in our country have gained achievements of world interest, the aerodynamics community has made outstanding contributions for the development of these undertakings and the science of aerodynamics. To promote further the development of the aerodynamics, meet the challenge in the new century, summary the experience, cultivate the professional personnel and to serve better the cause of aeronautics and astronautics and the national economy, the present Series of Modern Aerodynamics is organized and published.


Rarefied Gas Flows in Microscale Geometries

Rarefied Gas Flows in Microscale Geometries
Author: Stephanie Y. Docherty
Publisher:
Total Pages: 0
Release: 2015
Genre:
ISBN:

Download Rarefied Gas Flows in Microscale Geometries Book in PDF, ePub and Kindle

Accurate predictions of the flow behaviour in microscale geometries are needed, for example, to design and optimise micro devices, and to ensure their safety/reliability. Rarefied gas flows in such geometries tend, however, to be far from local thermodynamic equilibrium, meaning that the flow behaviour cannot be described by conventional fluid mechanics. Alternative approaches for modelling 'non-equilibrium' gas flows have been proposed in recent years; because analytical solution methods are subject to significant limitations, the direct simulation Monte Carlo (DSMC) method is, at present, the most practical numerical simulation tool for dilute gases. Unfortunately, the computational expense of tracking and computing collisions between thousands (or perhaps millions) of DSMC particles means that simulating the scales of realistic flow problems can require months (or even years) of computing time. This has resulted in the development of continuum-DSMC 'hybrid' methods, which aim to combine the efficiency of a conventional continuum-fluid description with the detail and accuracy of the DSMC method. This thesis focuses on the development of a continuum-DSMC method that offers a more general approach than existing methods. Using a heterogeneous framework with a field-wise coupling strategy, this new method is not subject to the limitations of the well-known domain decomposition framework, or the restrictions of the heterogeneous point-wise coupling approach. The continuum-fluid description is applied across the entire flow field, while the DSMC method is performed in dispersed micro elements that can be any size and at any location; these elements then provide the continuum description with updated constitutive and boundary information. Unlike most methods in the literature, the coupling strategy presented here is able to cope with heat transfer, and so non-isothermal flows can be simulated. Testing and validation of this new continuum-DSMC method is performed by simulating a number of benchmark cases and comparing the results with full DSMC solutions of the same cases. Two 1D flow problems are considered: a micro Fourier flow problem tests the energy coupling procedure of the method, and a high-speed micro Couette flow problem demonstrates the full coupling algorithm. In general, the method's accuracy is found to depend on the arrangement of the micro elements - with sufficient micro resolution, good agreement with the equivalent full DSMC simulations can be obtained. Although the hybrid method offers no computational speed-up over the full DSMC simulations for several of these 1D test cases and only modest speed-ups for the others, both of these 1D ow problems are simulated only to validate the coupling strategy of the method. Considerable speed-ups are offered by the method when simulating a larger and more realistic flow problem: a microchannel with a high-aspect-ratio cross-section acts as a representative geometry for modelling a gas flow through a narrow microscale crack. While the limitations of existing hybrid methods preclude their use for this type of high-aspect-ratio geometry, the new hybrid method is able to model this problem under isothermal and non-isothermal conditions. The implementation of the method is simplified to 2D by assuming that the flow variation in the streamwise direction is negligible, i.e. the method is applied to the microchannel cross-section only. Accurate predictions of the mass flow rate and the streamwise velocity field are obtained for a number of test cases; accurate predictions of the temperature field are also obtained when there is a temperature difference between the bounding walls.


Microscale Gas Flow

Microscale Gas Flow
Author: Toby Thatcher
Publisher:
Total Pages:
Release: 2005
Genre: Gas flow
ISBN:

Download Microscale Gas Flow Book in PDF, ePub and Kindle


Micro Gas Flows

Micro Gas Flows
Author: Nishanth Dongari
Publisher:
Total Pages: 0
Release: 2012
Genre:
ISBN:

Download Micro Gas Flows Book in PDF, ePub and Kindle

The behaviour of gas flows in microscale systems cannot be accurately described by the Navier-Stokes-Fourier (N-S-F) equations of macroscale fluid dynamics. Micro and nano-scale gas flows often display non-standard fluid behaviour, and near a solid bounding surface they are dominated by the effect of gas molecule-surface interactions. This leads to the formation of a Knudsen layer (KL): a local thermodynamically non-equilibrium region of thickness of a few mean free paths (MFP) from the surface. Linear constitutive relations for shear stress and heat flux are no longer necessarily valid in the KL. To account for this, we investigate a power-law (PL) form of the probability distribution function for free paths of rarefied gas molecules in arbitrary wall confinements. PL based geometry dependent MFP models are derived for planar and non-planar geometry systems by taking into account the boundary limiting effects on the molecular free paths. Molecular dynamics (MD) numerical experiments are carried out to rigorously validate the PL model, under a wide range of rarefaction conditions. MD is the most appropriate simulation tool as it is deterministic, allowing for realistic molecular behaviour, i.e. molecular attractions, repulsions, movements and scatterings. The free path measurements of individual molecules convey that conventional form of exponential distribution function is not valid under rarefied conditions and follow Lévy type of flights, irrespective of the presence of the wall. MFP profiles of MD measurements and PL model for confined surfaces in the transition flow regime show sharp gradients close to the wall, while exponential model predicts shallower gradients. As gas transport properties can be related to the MFP through kinetic theory, the N-S-F constitutive relations, and the velocity slip and the temperature jump boundary conditions are then modified in order to better capture the flow behaviour in the Knudsen layers close to surfaces. The new modelling technique is tested for isothermal and non-isothermal gas flows in both planar and non-planar confinements. The results show that our approach greatly improves the near-wall accuracy of the N-S-F equations, well beyond the slip-flow regime. In general, the current method exhibits good agreement for velocity and temperature profiles up to Kn ~ 1, and for integral flow parameters up to Kn ~ 5, without tuning any slip and jump coefficients. The PL scaling can be readily extended to complex geometries, and straightforwardly incorporated into existing computational fluid dynamics (CFD) codes. The current work is significant from the numerical simulation point of view because simulation tools are better developed for N-S-F equations, when compared to other higher order equations such as Burnett, R26 etc.


Selected Papers from the ISTEGIM'19

Selected Papers from the ISTEGIM'19
Author: Lucien Baldas
Publisher: MDPI
Total Pages: 180
Release: 2021-03-01
Genre: Science
ISBN: 3036501002

Download Selected Papers from the ISTEGIM'19 Book in PDF, ePub and Kindle

This Special Issue compiles 11 scientific works that were presented during the International Symposium on Thermal Effects in Gas Flow in Microscale, ISTEGIM 2019, held in Ettlingen, Germany, in October 2019. This symposium was organized in the framework of the MIGRATE Network, an H2020 Marie Skłodowska-Curie European Training Network that ran from November 2015 to October 2019 (www.migrate2015.eu). MIGRATE intends to address some of the current challenges in innovation that face the European industry with regard to heat and mass transfer in gas-based microscale processes. The papers collected in this book focus on fundamental issues that are encountered in microfluidic systems involving gases, such as the analysis of gas–surface interactions under rarefied conditions, the development of innovative integrated microsensors for airborne pollutants, new experimental techniques for the measurement of local quantities in miniaturized devices and heat transfer issues inside microchannels. The variety of topics addressed in this book emphasizes that multi-disciplinarity is the real common thread of the current applied research in microfluidics. We hope that this book will help to stimulate early-stage researchers who are working in microfluidics all around the world. This book is dedicated to them!


Gas Flows in Microsystems

Gas Flows in Microsystems
Author: Lucien Baldas
Publisher: MDPI
Total Pages: 220
Release: 2019-10-28
Genre: Technology & Engineering
ISBN: 3039215426

Download Gas Flows in Microsystems Book in PDF, ePub and Kindle

The last two decades have witnessed a rapid development of microelectromechanical systems (MEMS) involving gas microflows in various technical fields. Gas microflows can, for example, be observed in microheat exchangers designed for chemical applications or for cooling of electronic components, in fluidic microactuators developed for active flow control purposes, in micronozzles used for the micropropulsion of nano and picosats, in microgas chromatographs, analyzers or separators, in vacuum generators and in Knudsen micropumps, as well as in some organs-on-a-chip, such as artificial lungs. These flows are rarefied due to the small MEMS dimensions, and the rarefaction can be increased by low-pressure conditions. The flows relate to the slip flow, transition or free molecular regimes and can involve monatomic or polyatomic gases and gas mixtures. Hydrodynamics and heat and mass transfer are strongly impacted by rarefaction effects, and temperature-driven microflows offer new opportunities for designing original MEMS for gas pumping or separation. Accordingly, this Special Issue seeks to showcase research papers, short communications, and review articles that focus on novel theoretical and numerical models or data, as well as on new experimental results and technics, for improving knowledge on heat and mass transfer in gas microflows. Papers dealing with the development of original gas MEMS are also welcome.