Thermodynamic Equilibrium And Stability Of Materials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Thermodynamic Equilibrium And Stability Of Materials PDF full book. Access full book title Thermodynamic Equilibrium And Stability Of Materials.

Thermodynamic Equilibrium and Stability of Materials

Thermodynamic Equilibrium and Stability of Materials
Author: Long-Qing Chen
Publisher: Springer
Total Pages: 455
Release: 2021-12-17
Genre: Science
ISBN: 9789811386909

Download Thermodynamic Equilibrium and Stability of Materials Book in PDF, ePub and Kindle

This is a textbook on thermodynamics of materials for junior/senior undergraduate students and first-year graduate students as well as a reference book for researchers who would like to refresh their understanding of thermodynamics. The textbook employs a plain language to explain the thermodynamic concepts and quantities. It embraces the mathematical beauty and rigor of Gibbs thermodynamics through the fundamental equation of thermodynamics from which all thermodynamic properties of a material can be derived. However, a reader with basic first-year undergraduate calculus skills will be able to get through the book without difficulty. One unique feature of this textbook is the descriptions of the step-by-step procedures for computing all the thermodynamic properties from the fundamental equation of thermodynamics and all the thermodynamic energies from a set of common, experimentally measurable thermodynamic properties, supplemented with ample numerical examples. Another unique feature of this textbook is its emphasis on the concept of chemical potential and its applications to phase equilibria in single component systems and binary solutions, chemical reaction equilibria, and lattice and electronic defects in crystals. The concept of chemical potential is introduced at the very beginning of the book together with temperature and pressure. It avoids or minimizes the use of terms such as molar Gibbs free energy, partial molar Gibbs free energy, or Gibbs potential because molar Gibbs free energy or partial molar Gibbs free energy is precisely the chemical potential of a material or a component. It is the chemical potential that determines the stability of chemical species, compounds, and phases and their tendency to chemically react to form new species, transform to new physical state, and migrate from one spatial location to another. Therefore, it is the chemical potential differences or gradients that drive essentially all materials processes of interest. A reader after finishing reading the book is expected to not only achieve a high-level fundamental understanding of thermodynamics but also acquire the analytical skills of applying thermodynamics to determining materials equilibrium and driving forces for materials processes.


Thermodynamic Equilibrium and Stability of Materials

Thermodynamic Equilibrium and Stability of Materials
Author: Long-Qing Chen
Publisher:
Total Pages: 0
Release: 2022
Genre:
ISBN: 9789811386923

Download Thermodynamic Equilibrium and Stability of Materials Book in PDF, ePub and Kindle

This is a textbook on thermodynamics of materials for junior/senior undergraduate students and first-year graduate students as well as a reference book for researchers who would like to refresh their understanding of thermodynamics. The textbook employs a plain language to explain the thermodynamic concepts and quantities. It embraces the mathematical beauty and rigor of Gibbs thermodynamics through the fundamental equation of thermodynamics from which all thermodynamic properties of a material can be derived. However, a reader with basic first-year undergraduate calculus skills will be able to get through the book without difficulty. One unique feature of this textbook is the descriptions of the step-by-step procedures for computing all the thermodynamic properties from the fundamental equation of thermodynamics and all the thermodynamic energies from a set of common, experimentally measurable thermodynamic properties, supplemented with ample numerical examples. Another unique feature of this textbook is its emphasis on the concept of chemical potential and its applications to phase equilibria in single component systems and binary solutions, chemical reaction equilibria, and lattice and electronic defects in crystals. The concept of chemical potential is introduced at the very beginning of the book together with temperature and pressure. It avoids or minimizes the use of terms such as molar Gibbs free energy, partial molar Gibbs free energy, or Gibbs potential because molar Gibbs free energy or partial molar Gibbs free energy is precisely the chemical potential of a material or a component. It is the chemical potential that determines the stability of chemical species, compounds, and phases and their tendency to chemically react to form new species, transform to new physical state, and migrate from one spatial location to another. Therefore, it is the chemical potential differences or gradients that drive essentially all materials processes of interest. A reader after finishing reading the book is expected to not only achieve a high-level fundamental understanding of thermodynamics but also acquire the analytical skills of applying thermodynamics to determining materials equilibrium and driving forces for materials processes.


Thermodynamic Equilibrium and Stability of Materials

Thermodynamic Equilibrium and Stability of Materials
Author: Long-Qing Chen
Publisher: Springer Nature
Total Pages: 464
Release: 2022-01-01
Genre: Science
ISBN: 9811386919

Download Thermodynamic Equilibrium and Stability of Materials Book in PDF, ePub and Kindle

This is a textbook on thermodynamics of materials for junior/senior undergraduate students and first-year graduate students as well as a reference book for researchers who would like to refresh their understanding of thermodynamics. The textbook employs a plain language to explain the thermodynamic concepts and quantities. It embraces the mathematical beauty and rigor of Gibbs thermodynamics through the fundamental equation of thermodynamics from which all thermodynamic properties of a material can be derived. However, a reader with basic first-year undergraduate calculus skills will be able to get through the book without difficulty. One unique feature of this textbook is the descriptions of the step-by-step procedures for computing all the thermodynamic properties from the fundamental equation of thermodynamics and all the thermodynamic energies from a set of common, experimentally measurable thermodynamic properties, supplemented with ample numerical examples. Another unique feature of this textbook is its emphasis on the concept of chemical potential and its applications to phase equilibria in single component systems and binary solutions, chemical reaction equilibria, and lattice and electronic defects in crystals. The concept of chemical potential is introduced at the very beginning of the book together with temperature and pressure. It avoids or minimizes the use of terms such as molar Gibbs free energy, partial molar Gibbs free energy, or Gibbs potential because molar Gibbs free energy or partial molar Gibbs free energy is precisely the chemical potential of a material or a component. It is the chemical potential that determines the stability of chemical species, compounds, and phases and their tendency to chemically react to form new species, transform to new physical state, and migrate from one spatial location to another. Therefore, it is the chemical potential differences or gradients that drive essentially all materials processes of interest. A reader after finishing reading the book is expected to not only achieve a high-level fundamental understanding of thermodynamics but also acquire the analytical skills of applying thermodynamics to determining materials equilibrium and driving forces for materials processes.


Computational Thermodynamics of Materials

Computational Thermodynamics of Materials
Author: Zi-Kui Liu
Publisher: Cambridge University Press
Total Pages: 261
Release: 2016-06-30
Genre: Science
ISBN: 0521198968

Download Computational Thermodynamics of Materials Book in PDF, ePub and Kindle

Integrates fundamental concepts with experimental data and practical applications, including worked examples and end-of-chapter problems.


The Classical Thermodynamics of Deformable Materials

The Classical Thermodynamics of Deformable Materials
Author: A. G. McLellan
Publisher: Cambridge University Press
Total Pages: 360
Release: 1980-05-29
Genre: Science
ISBN: 0521212375

Download The Classical Thermodynamics of Deformable Materials Book in PDF, ePub and Kindle

This 1980 monograph develops from first principles the description of finite deformations of solids under stress and the forces acting, and also the expression of internal forces in terms of stress tensors. The important feature of the book is that elastic properties are discussed and developed consistently from classical thermodynamics. In other books, this point of view is acknowledged only by assuming the existence of an elastic energy function, thus restricting their range mainly to the problem of the spatial distribution of stresses and strains. Topics discussed as applications of the theory include thermal expansion, specific heats, stiffness and complicances, the effects of symmetry on thermodynamic properties, diffusion in a stressed solid, equilibrium in contact with a solution of the solid, phase stability, solid state phase transitions and twinning.


Materials Thermodynamics

Materials Thermodynamics
Author: Y. Austin Chang
Publisher: John Wiley & Sons
Total Pages: 317
Release: 2010-01-26
Genre: Science
ISBN: 0470549955

Download Materials Thermodynamics Book in PDF, ePub and Kindle

A timely, applications-driven text in thermodynamics Materials Thermodynamics provides both students and professionals with the in-depth explanation they need to prepare for the real-world application of thermodynamic tools. Based upon an actual graduate course taught by the authors, this class-tested text covers the subject with a broader, more industry-oriented lens than can be found in any other resource available. This modern approach: Reflects changes rapidly occurring in society at large—from the impact of computers on the teaching of thermodynamics in materials science and engineering university programs to the use of approximations of higher order than the usual Bragg-Williams in solution-phase modeling Makes students aware of the practical problems in using thermodynamics Emphasizes that the calculation of the position of phase and chemical equilibrium in complex systems, even when properly defined, is not easy Relegates concepts like equilibrium constants, activity coefficients, free energy functions, and Gibbs-Duhem integrations to a relatively minor role Includes problems and exercises, as well as a solutions manual This authoritative text is designed for students and professionals in materials science and engineering, particularly those in physical metallurgy, metallic materials, alloy design and processing, corrosion, oxidation, coatings, and high-temperature alloys.


Thermodynamics of Materials

Thermodynamics of Materials
Author: Qing Jiang
Publisher: Springer Science & Business Media
Total Pages: 312
Release: 2011-05-30
Genre: Technology & Engineering
ISBN: 3642147186

Download Thermodynamics of Materials Book in PDF, ePub and Kindle

"Thermodynamics of Materials" introduces the basic underlying principles of thermodynamics as well as their applicability to the behavior of all classes of materials, while providing an integrated approach from macro- (or classical) thermodynamics to meso- and nanothermodynamics, and microscopic (or statistical) thermodynamics. The book is intended for scientists, engineers and graduate students in all fields involving materials science-related disciplines. Both Dr. Qing Jiang and Dr. Zi Wen are professors at Jilin University.


Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis

Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis
Author: V. Parmon
Publisher: Elsevier
Total Pages: 340
Release: 2009-09-26
Genre: Technology & Engineering
ISBN: 0080931960

Download Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis Book in PDF, ePub and Kindle

Thermodynamics of Non-Equilibrium Processes for Chemists with a Particular Application to Catalysis consists of materials adapted from lectures on the thermodynamics of nonequilibrium processes that have been taught at the Department of Natural Sciences of Novosibirsk State University since 1995. The thermodynamics of nonequilibrium processes traditionally required students to have a strong background in physics. However, the materials featured in this volume allow anyone with knowledge in classical thermodynamics of equilibrium processes and traditional chemical kinetics to understand the subject. Topics discussed include systems in the thermodynamics of irreversible processes; thermodynamics of systems that are close to and far from equilibrium; thermodynamics of catalysts; the application of nonequilibrium thermodynamics to material science; and the relationship between entropy and information. This book will be helpful for research into complex chemical transformations, particularly catalytic transformations. Applies simple approaches of non-equilibrium thermodynamics to analyzing properties of chemically reactive systems Covers systems far from equilibrium, allowing the consideration of most chemically reactive systems of a chemical or biological nature This approach resolves many complicated problems in the teaching of chemical kinetics


An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science

An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science
Author: Eugene Machlin
Publisher: Elsevier
Total Pages: 478
Release: 2010-07-07
Genre: Science
ISBN: 0080549683

Download An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science Book in PDF, ePub and Kindle

This book is based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science. An Introduction to Aspects of Thermodynamics and Kinetics Relevant to Materials Science is about the application of thermodynamics and kinetics to solve problems within Materials Science. Emphasis is to provide a physical understanding of the phenomenon under discussion, with the mathematics presented as a guide. The problems are used to provide practice in quantitative application of principles, and also to give examples of applications of the general subject matter to problems having current interest and to emphasize the important physical concepts. End of chapter problems are included, as are references, and bibliography to reinforce the text. This book provides students with the theory and mathematics to understand the important physical understanding of phenomena. Based on a set of notes developed over many years for an introductory course taught to seniors and entering graduate students in materials science Provides students with the theory and mathematics to understand the important physical understanding of phenomena Includes end of chapter problems, references, and bibliography to reinforce the text


Thermodynamics in Materials Science, Second Edition

Thermodynamics in Materials Science, Second Edition
Author: Robert DeHoff
Publisher: CRC Press
Total Pages: 622
Release: 2006-03-13
Genre: Technology & Engineering
ISBN: 0849340659

Download Thermodynamics in Materials Science, Second Edition Book in PDF, ePub and Kindle

Thermodynamics in Materials Science, Second Edition is a clear presentation of how thermodynamic data is used to predict the behavior of a wide range of materials, a crucial component in the decision-making process for many materials science and engineering applications. This primary textbook accentuates the integration of principles, strategies, and thermochemical data to generate accurate “maps” of equilibrium states, such as phase diagrams, predominance diagrams, and Pourbaix corrosion diagrams. It also recommends which maps are best suited for specific real-world scenarios and thermodynamic problems. The second edition yet. Each chapter presents its subject matter consistently, based on the classification of thermodynamic systems, properties, and derivations that illustrate important relationships among variables for finding the conditions for equilibrium. Each chapter also contains a summary of important concepts and relationships as well as examples and sample problems that apply appropriate strategies for solving real-world problems. The up-to-date and complete coverage ofthermodynamic data, laws, definitions, strategies, and tools in Thermodynamics in Materials Science, Second Edition provides students and practicing engineers a valuable guide for producing and applying maps of equilibrium states to everyday applications in materials sciences.