Target Diagnostic Control System Implementation For The National Ignition Facility PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Target Diagnostic Control System Implementation For The National Ignition Facility PDF full book. Access full book title Target Diagnostic Control System Implementation For The National Ignition Facility.

Target Diagnostic Control System Implementation for the National Ignition Facility

Target Diagnostic Control System Implementation for the National Ignition Facility
Author:
Publisher:
Total Pages: 5
Release: 2010
Genre:
ISBN:

Download Target Diagnostic Control System Implementation for the National Ignition Facility Book in PDF, ePub and Kindle

The extreme physics of targets shocked by NIF's 192-beam laser are observed by a diverse suite of diagnostics. Many diagnostics are being developed by collaborators at other sites, but ad hoc controls could lead to unreliable and costly operations. A Diagnostic Control System (DCS) framework for both hardware and software facilitates development and eases integration. Each complex diagnostic typically uses an ensemble of electronic instruments attached to sensors, digitizers, cameras, and other devices. In the DCS architecture each instrument is interfaced to a low-cost Windows XP processor and Java application. Each instrument is aggregated with others as needed in the supervisory system to form an integrated diagnostic. The Java framework provides data management, control services and operator GUI generation. DCS instruments are reusable by replication with reconfiguration for specific diagnostics in XML. Advantages include minimal application code, easy testing, and high reliability. Collaborators save costs by assembling diagnostics with existing DCS instruments. This talk discusses target diagnostic instrumentation used on NIF and presents the DCS architecture and framework.


Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition

Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition
Author:
Publisher:
Total Pages: 8
Release: 2007
Genre:
ISBN:

Download Status of the National Ignition Facility Integrated Computer Control System (ICCS) on the Path to Ignition Book in PDF, ePub and Kindle

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF is the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into more than 6,000 line replaceable units such as optical assemblies, laser amplifiers, and multifunction sensor packages containing 60,000 control and diagnostic points. NIF is operated by the large-scale Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 800 front-end processors and 50 supervisory servers. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. A shot automation framework has been deployed during the past year to orchestrate and automate shots performed at the NIF using the ICCS. In December 2006, a full cluster of 48 beams of NIF was fired simultaneously, demonstrating that the independent bundle control system will scale to full scale of 192 beams. At present, 72 beams have been commissioned and have demonstrated 1.4-Megajoule capability of infrared light. During the next two years, the control system will be expanded to include automation of target area systems including final optics, target positioners and diagnostics, in preparation for project completion in 2009. Additional capabilities to support fusion ignition shots in a National Ignition Campaign (NIC) beginning in 2010 will include a cryogenic target system, target diagnostics, and integrated experimental shot data analysis with tools for data visualization and archiving. This talk discusses the current status of the control system implementation and discusses the plan to complete the control system on the path to ignition.


Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition

Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition
Author:
Publisher: ScholarlyEditions
Total Pages: 1751
Release: 2012-01-09
Genre: Science
ISBN: 1464964114

Download Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition Book in PDF, ePub and Kindle

Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition is a ScholarlyEditions™ eBook that delivers timely, authoritative, and comprehensive information about Applied, Analytical, and Imaging Sciences Research. The editors have built Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition on the vast information databases of ScholarlyNews.™ You can expect the information about Applied, Analytical, and Imaging Sciences Research in this eBook to be deeper than what you can access anywhere else, as well as consistently reliable, authoritative, informed, and relevant. The content of Issues in Applied, Analytical, and Imaging Sciences Research: 2011 Edition has been produced by the world’s leading scientists, engineers, analysts, research institutions, and companies. All of the content is from peer-reviewed sources, and all of it is written, assembled, and edited by the editors at ScholarlyEditions™ and available exclusively from us. You now have a source you can cite with authority, confidence, and credibility. More information is available at http://www.ScholarlyEditions.com/.


Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility

Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility
Author:
Publisher:
Total Pages: 8
Release: 2007
Genre:
ISBN:

Download Target Diagnostic Instrument-Based Controls Framework for the National Ignition Facility Book in PDF, ePub and Kindle

NIF target diagnostics are being developed to observe and measure the extreme physics of targets irradiated by the 192-beam laser. The response time of target materials can be on the order of 100ps--the time it takes light to travel 3 cm--temperatures more than 100 times hotter than the surface of the sun, and pressures that exceed 109 atmospheres. Optical and x-ray diagnostics were developed and fielded to observe and record the results of the first 4-beam experiments at NIF. Hard and soft x-ray spectra were measured, and time-integrated and gated x-ray images of hydrodynamics experiments were recorded. Optical diagnostics recorded backscatter from the target, and VISAR laser velocimetry measurements were taken of laser-shocked target surfaces. Additional diagnostics are being developed and commissioned to observe and diagnose ignition implosions, including various neutron and activation diagnostics. NIF's diagnostics are being developed at LLNL and with collaborators at other sites. To accommodate the growing number of target diagnostics, an Instrument-Based Controls hardware-software framework has been developed to facilitate development and ease integration into the NIF Integrated Computer Control System (ICCS). Individual WindowsXP PC controllers for each digitizer, power supply and camera (i.e., instruments) execute controls software unique to each instrument model. Each hardware-software controller manages a single instrument, in contrast to the complexity of combining all the controls software needed for a diagnostic into a single controller. Because of this simplification, controllers can be more easily tested on the actual hardware, evaluating all normal and off-normal conditions. Each target diagnostic is then supported by a number of instruments, each with its own hardware-software instrument-based controller. Advantages of the instrument-based control architecture and framework include reusability, testability, and improved reliability of the deployed hardware and software. Since the same instruments are commonly used on many different diagnostics, the controllers are reusable by replicating the hardware and software as a unit and reconfiguring the controller using configuration files for the specific diagnostic. Diagnostics are fully integrated and interoperable with ICCS supervisory and shot controls using these configuration files to drive the diagnostics' instrument-based controllers.


Status of the National Ignition Facility and Control System

Status of the National Ignition Facility and Control System
Author: R. W. Patterson
Publisher:
Total Pages: 8
Release: 2005
Genre:
ISBN:

Download Status of the National Ignition Facility and Control System Book in PDF, ePub and Kindle

The National Ignition Facility (NIF) at the Lawrence Livermore National Laboratory is a stadium-sized facility under construction that will contain a 192-beam, 1.8-Megajoule, 500-Terawatt, ultraviolet laser system together with a 10-meter diameter target chamber with room for multiple experimental diagnostics. NIF will be the world's largest and most energetic laser experimental system, providing a scientific center to study inertial confinement fusion (ICF) and matter at extreme energy densities and pressures. NIF's laser beams are designed to compress fusion targets to conditions required for thermonuclear burn, liberating more energy than required to initiate the fusion reactions. NIF is comprised of 24 independent bundles of 8 beams each using laser hardware that is modularized into line replaceable units such as optical assemblies, amplifiers, and multi-function sensor packages containing thousands of adjusting motors and diagnostic points. NIF is operated by the Integrated Computer Control System (ICCS) in an architecture partitioned by bundle and distributed among over 750 front-end processors and supervisory servers. Bundle control system partitions are replicated and commissioned by configuring the control database for each new bundle. NIF's automated control subsystems are built from a common object-oriented software framework based on CORBA distribution that deploys the software across the computer network and achieves interoperation between different languages and target architectures. ICCS software is approximately 80% complete with 1.1 million source lines of code delivered to the facility. NIF has successfully activated, commissioned and utilized the first four laser beams to conduct nearly 400 shots in 2003 and 2004, resulting in high quality data that could not be obtained on any other laser system. This presentation discusses NIF's early light commissioning, the status of the control system implementation and plans to complete installation of the remaining laser bundles on the path to fusion ignition.


The Design and Implementation of the Integrated Timing System to be Used in the National Ignition Facility

The Design and Implementation of the Integrated Timing System to be Used in the National Ignition Facility
Author:
Publisher:
Total Pages:
Release: 1999
Genre:
ISBN:

Download The Design and Implementation of the Integrated Timing System to be Used in the National Ignition Facility Book in PDF, ePub and Kindle

The National Ignition Facility, or NIF, currently under construction at the Lawrence Livermore National Laboratory will contain the world's most powerful laser. By the year 2003 the NIF laser will be a research tool allowing scientists a glimpse into plasma interactions that are equivalent to those found in the center of the sun. Every eight hours the NIF will generate 1.8 MJ of 351-nm light carried by 192 pulsed laser beams and focus it onto a pea-sized target. This will result in a fusion reaction between two isotopes of hydrogen, creating for a few hundred picoseconds stellar conditions. Synchronizing the beams and diagnosing the fusion reaction requires generation and delivery of over 1000 precisely timed triggers to a multitude of systems. The NIF Integrated Timing System (ITS) was developed to provide reliable, accurately timed triggers that allow each client system to operate independently during periods of shot preparation and maintenance, yet be coordinated to a few tens of picoseconds during the experiment. The ITS applies technologies developed for fiber communications and Two-Way Time Transfer, and integrates them by way of a computer communications network to achieve distributed control, dynamically configurable coordination and independent among timing channels, and integrated self-diagnostics.


Target Area Design Basis and System Performance for the National Ignition Facility

Target Area Design Basis and System Performance for the National Ignition Facility
Author:
Publisher:
Total Pages: 10
Release: 1994
Genre:
ISBN:

Download Target Area Design Basis and System Performance for the National Ignition Facility Book in PDF, ePub and Kindle

A description of Target Area systems performance shows that the target area conceptual design can meet its performance criteria. Before the shot, the target area provides a vacuum of 5 × 10−5 Torr within 2 hours. A target, cryogenic or non-cryogenic, is placed to within 1 cm of chamber center with a positioner that minimizes vibration of the target. The target is then aligned to d"7 [mu]m by using the Target Alignment Sensor (TAS) system. The viewers in this system will also determine if the target is ready for illumination. Diagnostics are aligned to the necessary specifications by the alignment viewers. The target is shot and data is collected. Nearly all tritium (if present) is passed through the vacuum system and into the collection system. The analysis that supports the target area design basis is a combination of careful assumptions, data, and calculations. Some uncertainty exists concerning certain aspects of the source terms for x-rays and debris, material responses to this energy flux, and the full consequences of the material responses that do occur. For this reason, we have selected what we believe are conservative values in these areas. Advanced conceptual design activities will improve our understanding of these phenomena and allow a more quantitative assessment of the degree of conservatism inherent to the system. However, the results of this preliminary survey of target area operations indicate an annual shot rate of 600 (for the mix of shots shown in Table 1) is feasible for this set of target area systems.


The Overview of the National Ignition Facility Distributed Computer Control System

The Overview of the National Ignition Facility Distributed Computer Control System
Author:
Publisher:
Total Pages:
Release: 2001
Genre:
ISBN:

Download The Overview of the National Ignition Facility Distributed Computer Control System Book in PDF, ePub and Kindle

The Integrated Computer Control System (ICCS) for the National Ignition Facility (NIF) is a layered architecture of 300 front-end processors (FEP) coordinated by supervisor subsystems including automatic beam alignment and wavefront control, laser and target diagnostics, pulse power, and shot control timed to 30 ps. FEP computers incorporate either VxWorks on PowerPC or Solaris on UltraSPARC processors that interface to over 45,000 control points attached to VME-bus or PCI-bus crates respectively. Typical devices are stepping motors, transient digitizers, calorimeters, and photodiodes. The front-end layer is divided into another segment comprised of an additional 14,000 control points for industrial controls including vacuum, argon, synthetic air, and safety interlocks implemented with Allen-Bradley programmable logic controllers (PLCs). The computer network is augmented asynchronous transfer mode (ATM) that delivers video streams from 500 sensor cameras monitoring the 192 laser beams to operator workstations. Software is based on an object-oriented framework using CORBA distribution that incorporates services for archiving, machine configuration, graphical user interface, monitoring, event logging, scripting, alert management, and access control. Software coding using a mixed language environment of Ada95 and Java is one-third complete at over 300 thousand source lines. Control system installation is currently under way for the first 8 beams, with project completion scheduled for 2008.