Synthesis And Characterization Of Cobalt Carbide Based Nanomaterials PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Synthesis And Characterization Of Cobalt Carbide Based Nanomaterials PDF full book. Access full book title Synthesis And Characterization Of Cobalt Carbide Based Nanomaterials.

Synthesis and Characterization of Cobalt Carbide Based Nanomaterials

Synthesis and Characterization of Cobalt Carbide Based Nanomaterials
Author: Zachary John Huba
Publisher:
Total Pages: 156
Release: 2014
Genre: Chemistry, Inorganic
ISBN:

Download Synthesis and Characterization of Cobalt Carbide Based Nanomaterials Book in PDF, ePub and Kindle

Permanent magnets are used heavily for multiple applications in industry and current electronic technologies. However, the current permanent landscape is muddled by high cost of materials and insufficient magnetic or thermal properties. The primary focus of this dissertation work is the synthesis and optimization of a new permanent magnetic material, in the form of cobalt carbide nanomaterials. The optimization revolved around controlling the crystal phase and particle shape of synthesized cobalt carbide particles; these parameters have significant impact on the observed magnetic properties of magnetic nanoparticles. Co3C was identified to be the preferred crystal phase, leading to better magnetic properties. Cobalt Fumarate was found to be the ideal precursor to synthesize anisotropic Co3C particles and enhance magnetic properties of the synthesized cobalt carbide particles. Lastly, an ethanol based reduction system was employed to develop the greener synthesis of Co and Ni magnetic particles.


Optimizing Cobalt Carbide Based Nanomaterials by Using Nucleating Agents and Statistical Routes

Optimizing Cobalt Carbide Based Nanomaterials by Using Nucleating Agents and Statistical Routes
Author: Turki I. Almugaiteeb
Publisher:
Total Pages:
Release: 2016
Genre: Carbides
ISBN:

Download Optimizing Cobalt Carbide Based Nanomaterials by Using Nucleating Agents and Statistical Routes Book in PDF, ePub and Kindle

The continuous high demand on permanent magnets in industries opened new research plateau to develop alternative magnetic material. The current used permanent magnet materials in the market still suffer from high cost and insufficient magnetic or thermal properties. The central focus of this dissertation work is the optimization of cobalt carbide based nanomaterial by means of modifying polyol synthesis assisted by nucleation agent and systematic statistics using JMP software tool. In most existing literatures, producing cobalt carbide (Co2C or Co3C) lack reproducibility and consistency resulting in nonsolid magnetic properties results. The practical requirements for cobalt carbide to be used as permanent magnet are high coercivity (Hc), high magnetization (Ms), resulting in a high-energy product (HcxMs). Previous literatures have shown coercivities of 1.5 to 2.5 kOe for cobalt carbides under aggressive temperatures conditions (300oC) or after aligning the particles under magnetic field. A statistical guided method performed a sequence of experiments toward producing high coercivities using surface response design. Primarily, the statistical study to optimize cobalt carbide was made by analyzing experimental condition to fulfill high magnetic properties with tuned conditions as much as possible. Therefore, having the advantage for superior control on process variable when shifting cobalt carbide for scale up production in flow chemistry set up using microreaction system (MMRS). The optimization is based upon selecting the most important conditions in polyol reaction to produce cobalt carbide (Co2C or Co3C) and feed JMP software model e.g. reaction temperature, reaction time, and or precursor concentration ... etc. These factors called (effects) used to design experiments and generate tables to run minimum experiments. Points of each effect (levels) are selected based on previous knowledge and experience with the synthesis. The output called (response) can be any of the magnetic properties of our interest e.g. magnetization (Ms), coercivity (Hc), or energy magnetic product (HcxMs). In the first model fit of cobalt carbide magnetic was studied in a polyol reaction to increase its magnetic energy product and optimize the experimental conditions. The results disclosed increase in magnetic energy product (6.2 MGOe) when validating the prediction model conditions suggested by JMP: shorter reaction time, and lower precursor concentration conditions at maximum reaction temperature. Finally, to my knowledge studying the effect of the nucleating agent to alter cobalt carbide growth have not been studied so far. Therefore, statistical study design using central composite design (CCD) to investigate the nucleating agent effect of silver nitrite on cobalt carbide coercivity was made. The importance of nucleating agent on coercivity is vigorous to attain and control the growth direction of cobalt carbide nanoparticles. This is due to the shape anisotropy contribution to enhance coercivity unlike weak shape anisotropy attributed to agglomeration of nanoparticles demonstrated in previous studies. Enhancement of coercivity reached 3 kOe with aspect ratio control as a function of silver nitrite concentration under lower reaction temperature.


Cobalt-based Magnetic Nanoparticles

Cobalt-based Magnetic Nanoparticles
Author: Mehdi Zamanpour
Publisher:
Total Pages: 134
Release: 2014
Genre: Energy storage
ISBN:

Download Cobalt-based Magnetic Nanoparticles Book in PDF, ePub and Kindle

The ever-increasing desire for more energy attainable from a smaller volume of matter has driven researchers to explore advanced materials at the molecular size. Magnetic materials at the nanometer size scale have been the subject of enormous research effort worldwide for more than half a century. Different magnetic nanoparticles have shown different behavior in the absence and presence of an external magnetic field, which has led them to be categorized as soft or hard magnets. Applications range from medical and biomedical devices to magnetic recording media and magnetic sensing have emphasized the importance of this class of materials. Soft magnetic phases have found application in power generation and magnetic targeted drug delivery, while hard magnets have been subject of extensive research for application as energy storage media. Discovery of the exchange-coupling phenomenon between two adjacent hard and soft magnetic phases has attracted scientists to develop advanced materials for energy storage with no usage of fossil fuels: clean energy. In this Dissertation, synthesis of pure phase, soft FeCo nanoparticles with high magnetic moment and hard phase CoxC nanoparticles possessing high coercivity is reported. The polyol method (chemical co-precipitating at polyhydric alcohol as reducing agent) is used to make FeCo and CoxC nanoparticles and the effects of important reaction kinetics parameters on the structure and magnetic properties of the products are studied. Careful analysis of correlations between these parameters and the properties of the magnetic particles has made synthesis of FeCo and CoxC nanoparticles with desired properties possible. Fabrication of MnAlC-FeCo heterostructures as a rare earth-free alternative for high-performance permanent magnet is also reported. To synthesize MnAlC-FeCo, mechanical alloying and dry mixing of MnAlC and FeCo nanoparticles are accomplished followed by annealing in a furnace. Overall, the achieved results in this work enable synthesis of high moment FeCo and high coercivity CoxC with desired structure and magnetic properties obtained through polyol method. In particular, this Dissertation provides the technique to fabricate cobalt carbide nanoparticles without using rare earth elements as a catalyst or as heterogeneous seed nuclei at any stage of the processing.


Synthesis and Characterization of Magnetic Cabides and Oxides Nanomaterials

Synthesis and Characterization of Magnetic Cabides and Oxides Nanomaterials
Author: Hei Man Tsui
Publisher:
Total Pages:
Release: 2018
Genre: Chemistry, Inorganic
ISBN:

Download Synthesis and Characterization of Magnetic Cabides and Oxides Nanomaterials Book in PDF, ePub and Kindle

The design and development of nanoparticles is of great interest in the current energy and electronic industry. However, based on the current materials available the production cost can be high with insignificant magnetic and mechanical properties. Specifically, rare-earth magnetic materials composed of neodymium and samarium are known for their high magnetic performance, however, due to the cost of development there is a need to develop a versatile and cost effective material. Alternatively, cobalt carbide nanomaterials have shown to be a promising alternative for rare-earth free magnets as they exhibit comparable properties as hexaferrite magnetic materials. The primary goal of this dissertation focuses on the development of nanoparticles for permeant magnetic, and magnetic refrigeration applications. The first part of this work focuses on the synthesis of cobalt carbide (CoxC, x=2,3) nanoparticles using a novel polyol synthesis method by introducing a small amount of Ru, Cu, or Au as nucleating agent. It was found that the morphology and magnetic properties of the as-synthesized CoxC nanoparticles change as a result of directional growth of nanoparticles using nucleating agents. Needle-like particle morphology ranges from 20-50 nm in width and as long as 1 [micro]m in length were synthesized using Ru as nucleating agent. These particles exhibit magnetization saturation of 33.5 emu/g with a coercivity of 2870 Oe and a maximum energy product 1.92 MGOe (BHmax) observed. Particle morphology is a critical aspect in the development of magnetic nanoparticles as anisotropic particles have shown increased coercivity and magnetic properties. These CoxC nanomaterials have a higher maximum energy product compared to previous work providing further insight into the development of non-rare earth magnetic material. The second part of this dissertation work focuses on the sol-gel synthesis of perovskite LaCaMnO3(LCMO) nanomaterials. In this process, various chain lengths of polyethylene glycol (PEG) was added into a solution consisting of La, Ca, and Mn salts. The solution was left for the gelation process, and high temperature sintering to obtain the final product. By varying the polymer chain of the PEG, the size of the as synthesized LaCaMnO3 nanomaterials were altered. The as-synthesized LCMO nanomaterials have shown a maximum change in magnetic entropy ( -[delta]Sm) was found to be 19.3 Jkg−1K−1 at 278 K for a field change of 0-3 T and 8.7 Jkg−1K−1 for a field change of 0-1 T. This is a significant improvement in comparison to current literature of the material suggesting that this is a promising alternative to Gd materials that is prone to oxidation. With additional development, LCMO or related maganites could lead to application in commercial technologies.


Cobalt

Cobalt
Author: Khan Maaz
Publisher: BoD – Books on Demand
Total Pages: 168
Release: 2017-12-06
Genre: Science
ISBN: 9535136674

Download Cobalt Book in PDF, ePub and Kindle

Cobalt is a brittle, hard, silver-grey transition metal with high melting point, hard-wearing at elevated temperatures, good corrosion resistance and improved chemical, magnetic and mechanical properties. This book aims to provide in-depth study and analyses of various synthesis and processing techniques and characterization of cobalt that can lead to its increased applications in recent technology. This book presents deep understanding of the new techniques from basic to the advance level for scientists and engineers. The chapters cover all major aspects about cobalt and its application in material characterization with special emphasis on both theoretical and experimental aspects. This book addresses engineering professionals, students and materials scientists.


Synthesis and Characterization of Cobalt Nanoparticles for Biomedical Applications

Synthesis and Characterization of Cobalt Nanoparticles for Biomedical Applications
Author: Hari Lal Bhatta
Publisher:
Total Pages: 102
Release: 2011
Genre: Cobalt
ISBN:

Download Synthesis and Characterization of Cobalt Nanoparticles for Biomedical Applications Book in PDF, ePub and Kindle

Nanomaterial research has attracted a great deal of enthusiasm from the public because of the applications of nanomaterials in various areas of science such as physics, chemistry, medicine, and materials science. Biocompatible and nontoxic cobalt nanoparticles have biomedical applications including drug delivery, cell and deoxyribonucleic acid (DNA) separation, gene cloning, and magnetic resonance imaging. The main aim of this research project is to produce contamination-free cobalt nanoparticles for biomedical applications. Pulsed Laser Deposition (PLD) technique was used to fabricate contamination-free cobalt nanoparticles directly from cobalt foil. A KrF laser having laser pulses of wavelength 248 nm, pulse duration of 20 ns, and repetition rate of 10 Hz was employed in pulsed laser deposition technique. The synthesized cobalt nanoparticles were characterized using UV-Vis absorption spectroscopy and dynamic laser light scattering (DLLS). The synthesized cobalt nanoparticles were stabilized in glucose solutions of various concentrations. The UV-Vis absorption peak around 268 nm confirms the presence of cobalt nanoparticles in aqueous media. The DLLS size distribution of cobalt nanoparticles has been found in the range between 355 nm to 465 nm with variation of growth parameters such as laser energy, number of shot, and glucose concentration. Glucose stabilized cobalt nanoparticles have been successfully functionalized with DNA and laser modified DNA. The binding of cobalt nanoparticles with DNA plays an important role in the future for gene delivery.


Synthesis, Characterization, and Enhanced Magnetic Properties of Iron Carbide Nanomaterials

Synthesis, Characterization, and Enhanced Magnetic Properties of Iron Carbide Nanomaterials
Author: Brent M. Williams
Publisher:
Total Pages:
Release: 2017
Genre: Cementite
ISBN:

Download Synthesis, Characterization, and Enhanced Magnetic Properties of Iron Carbide Nanomaterials Book in PDF, ePub and Kindle

Permanent magnets are classified as hard magnetic materials with the main purpose of generating flux for applications such as electric motors, turbines, and hard drives. High coercivity, magnetic remanence, and saturation values with high stability are some of the requirements for permanent magnets. Rare-earth magnets including neodymium and samarium based magnets are known to have superior magnetic properties due to their high magnetocrystalline anisotropy. However, due to the price of rare-earth materials development of alternate permanent magnets composed of inexpensive materials is an ongoing process. Previously cobalt carbide (CoxC) have shown promise as a potential rare-earth free magnet alternative with magnetic properties comparable to that of hexaferrite materials. Unfortunately, CoxC magnets have a low magnetic saturation (50 emu g−1) which drastically lowers its energy product. Alternatively, iron carbide has a rather high bulk magnetization value of 140 emu g−1 and is composed of naturally abundant materials. The sole issue of iron carbide is that it is considered an intermediate magnet with properties between those of a hard and a soft magnetic material. The main focus of this work is the enhancement of the hard magnetic properties of iron carbide through size effect, shape anisotropy, magnetocrystalline anisotropy and exchange anisotropy. First a wet synthesis method was developed which utilized hexadecyltrimethylammonium chloride to control particle size, shape, and crystal structure to manipulate the magnetic properties of iron carbide. With this method a semi-hard 50 nm orthorhombic Fe3C phase and a magnetically soft single crystal hexagonal Fe--C3 structure with texture-induced magnetic properties were developed. The properties for both materials were further enhanced through formation of exchange bias Fe3C/CoO nanoaggregates and spring exchange coupling of the ferromagnetically hard and soft phases of Fe--C3/SrFe12O19. A 33% increase in coercivity was observed at room temperature for the antiferro/ferromagnetic Fe3C/CoO in comparison to the bare Fe3C. While iron carbide enhanced the magnetic saturation and remanence of strontium ferrite. This work concludes that with further development of iron carbide nanocomposites they may be employed as future alternative permanent magnets.


The Cobalt Oxide-Based Composite Nanomaterial Synthesis and Its Biomedical and Engineering Applications

The Cobalt Oxide-Based Composite Nanomaterial Synthesis and Its Biomedical and Engineering Applications
Author: Syam Sundar Lingala
Publisher:
Total Pages: 0
Release: 2019
Genre: Electronic books
ISBN:

Download The Cobalt Oxide-Based Composite Nanomaterial Synthesis and Its Biomedical and Engineering Applications Book in PDF, ePub and Kindle

The magnetic nanoparticles (NPs) are offering a wide range of applications in medical and engineering fields. Among all the magnetic nanoparticles, cobalt oxide (Co3O4) nanoparticles and its composite-based nanoparticles are attracting more interest from researchers because of its unique mechanical, thermal, and magnetic properties. The aim of this book is to bring together a number of recent contributions regarding the cobalt oxide-based composite nanoparticles from several researchers all over the world. The latest research results, innovations, and methodologies are reported in the book in order to support the discussion and to circulate ideas and knowledge about the applications of these materials in medical and engineering applications. This chapter presents the methodology for the synthesis and characterization and applications of cobalt oxide-based composite nanoparticles. The detailed analysis related to toxicity of these nanocomposite materials is also included in this book chapter.