Strong Stability Preserving Runge Kutta And Multistep Time Discretizations PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Strong Stability Preserving Runge Kutta And Multistep Time Discretizations PDF full book. Access full book title Strong Stability Preserving Runge Kutta And Multistep Time Discretizations.

Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations

Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations
Author: Sigal Gottlieb
Publisher: World Scientific
Total Pages: 189
Release: 2011
Genre: Mathematics
ISBN: 9814289264

Download Strong Stability Preserving Runge-Kutta and Multistep Time Discretizations Book in PDF, ePub and Kindle

This book captures the state-of-the-art in the field of Strong Stability Preserving (SSP) time stepping methods, which have significant advantages for the time evolution of partial differential equations describing a wide range of physical phenomena. This comprehensive book describes the development of SSP methods, explains the types of problems which require the use of these methods and demonstrates the efficiency of these methods using a variety of numerical examples. Another valuable feature of this book is that it collects the most useful SSP methods, both explicit and implicit, and presents the other properties of these methods which make them desirable (such as low storage, small error coefficients, large linear stability domains). This book is valuable for both researchers studying the field of time-discretizations for PDEs, and the users of such methods.


Strong Stability Preserving High-order Time Discretization Methods

Strong Stability Preserving High-order Time Discretization Methods
Author: Sigal Gottlieb
Publisher:
Total Pages: 30
Release: 2000
Genre: Boundary element methods
ISBN:

Download Strong Stability Preserving High-order Time Discretization Methods Book in PDF, ePub and Kindle

In this paper we review and further develop a class of strong-stability preserving (SSP) high-order time discretizations for semi-discrete method-of-lines approximations of partial differential equations. Termed TVD (total variation diminishing) time discretizations before this class of high-order time discretization methods preserves the strong-stability properties of first-order Euler time stepping and has proved very useful especially in solving hyperbolic partial differential equations. The new contributions in this paper include the development of optimal explicit SSP linear Runge-Kutta methods, their application to the strong stability of coercive approximations, a systematic study of explicit SSP multi-step methods, and a study of the strong-stability preserving property of implicit Runge-Kutta and multi-step methods.


Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact

Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact
Author: David Hart
Publisher:
Total Pages:
Release: 2017-07-09
Genre:
ISBN: 9781450352727

Download Proceedings of the Practice and Experience in Advanced Research Computing 2017 on Sustainability, Success and Impact Book in PDF, ePub and Kindle

Practice and Experience in Advanced Research Computing 2017 Jul 09, 2017-Jul 13, 2017 New Orleans, USA. You can view more information about this proceeding and all of ACM�s other published conference proceedings from the ACM Digital Library: http://www.acm.org/dl.


Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014

Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014
Author: Robert M. Kirby
Publisher: Springer
Total Pages: 504
Release: 2015-11-26
Genre: Computers
ISBN: 3319198009

Download Spectral and High Order Methods for Partial Differential Equations ICOSAHOM 2014 Book in PDF, ePub and Kindle

The book contains a selection of high quality papers, chosen among the best presentations during the International Conference on Spectral and High-Order Methods (2014), and provides an overview of the depth and breadth of the activities within this important research area. The carefully reviewed selection of papers will provide the reader with a snapshot of the state-of-the-art and help initiate new research directions through the extensive biography.


A First Course in the Numerical Analysis of Differential Equations

A First Course in the Numerical Analysis of Differential Equations
Author: A. Iserles
Publisher: Cambridge University Press
Total Pages: 481
Release: 2009
Genre: Mathematics
ISBN: 0521734908

Download A First Course in the Numerical Analysis of Differential Equations Book in PDF, ePub and Kindle

lead the reader to a theoretical understanding of the subject without neglecting its practical aspects. The outcome is a textbook that is mathematically honest and rigorous and provides its target audience with a wide range of skills in both ordinary and partial differential equations." --Book Jacket.


Handbook of Numerical Methods for Hyperbolic Problems

Handbook of Numerical Methods for Hyperbolic Problems
Author: Remi Abgrall
Publisher: Elsevier
Total Pages: 668
Release: 2016-11-17
Genre: Mathematics
ISBN: 0444637958

Download Handbook of Numerical Methods for Hyperbolic Problems Book in PDF, ePub and Kindle

Handbook of Numerical Methods for Hyperbolic Problems explores the changes that have taken place in the past few decades regarding literature in the design, analysis and application of various numerical algorithms for solving hyperbolic equations. This volume provides concise summaries from experts in different types of algorithms, so that readers can find a variety of algorithms under different situations and readily understand their relative advantages and limitations. Provides detailed, cutting-edge background explanations of existing algorithms and their analysis Ideal for readers working on the theoretical aspects of algorithm development and its numerical analysis Presents a method of different algorithms for specific applications and the relative advantages and limitations of different algorithms for engineers or readers involved in applications Written by leading subject experts in each field who provide breadth and depth of content coverage


Discontinuous Galerkin Methods

Discontinuous Galerkin Methods
Author: Bernardo Cockburn
Publisher: Springer Science & Business Media
Total Pages: 468
Release: 2012-12-06
Genre: Mathematics
ISBN: 3642597211

Download Discontinuous Galerkin Methods Book in PDF, ePub and Kindle

A class of finite element methods, the Discontinuous Galerkin Methods (DGM), has been under rapid development recently and has found its use very quickly in such diverse applications as aeroacoustics, semi-conductor device simula tion, turbomachinery, turbulent flows, materials processing, MHD and plasma simulations, and image processing. While there has been a lot of interest from mathematicians, physicists and engineers in DGM, only scattered information is available and there has been no prior effort in organizing and publishing the existing volume of knowledge on this subject. In May 24-26, 1999 we organized in Newport (Rhode Island, USA), the first international symposium on DGM with equal emphasis on the theory, numerical implementation, and applications. Eighteen invited speakers, lead ers in the field, and thirty-two contributors presented various aspects and addressed open issues on DGM. In this volume we include forty-nine papers presented in the Symposium as well as a survey paper written by the organiz ers. All papers were peer-reviewed. A summary of these papers is included in the survey paper, which also provides a historical perspective of the evolution of DGM and its relation to other numerical methods. We hope this volume will become a major reference in this topic. It is intended for students and researchers who work in theory and application of numerical solution of convection dominated partial differential equations. The papers were written with the assumption that the reader has some knowledge of classical finite elements and finite volume methods.


Applications of Nonstandard Finite Difference Schemes

Applications of Nonstandard Finite Difference Schemes
Author: Ronald E. Mickens
Publisher: World Scientific
Total Pages: 268
Release: 2000
Genre: Mathematics
ISBN: 9789810241339

Download Applications of Nonstandard Finite Difference Schemes Book in PDF, ePub and Kindle

The main purpose of this book is to provide a concise introduction to the methods and philosophy of constructing nonstandard finite difference schemes and illustrate how such techniques can be applied to several important problems. Chapter I gives an overview of the subject and summarizes previous work. Chapters 2 and 3 consider in detail the construction and numerical implementation of schemes for physical problems involving convection-diffusion-reaction equations, that arise in groundwater pollution and scattering of electromagnetic waves using Maxwell's equations. Chapter 4 examines certain mathematical issues related to the nonstandard discretization of competitive and cooperative models for ecology. The application chapters illustrate well the power of nonstandard methods. In particular, for the same accuracy as obtained by standard techniques, larger step sizes can be used. This volume will satisfy the needs of scientists, engineers, and mathematicians who wish to know how to construct nonstandard schemes and see how these are applied to obtain numerical solutions of the differential equations which arise in the study of nonlinear dynamical systems modeling important physical phenomena.


Additive Runge-Kutta Schemes for Convection-diffusion-reaction Equations

Additive Runge-Kutta Schemes for Convection-diffusion-reaction Equations
Author: Christopher Alan Kennedy
Publisher:
Total Pages: 56
Release: 2001
Genre: Differential equations
ISBN:

Download Additive Runge-Kutta Schemes for Convection-diffusion-reaction Equations Book in PDF, ePub and Kindle

Additive Runge-Kutta (ARK) methods are investigated for application to the spatially discretized one-dimensional convection-diffusion-reaction (CDR) equations. First, accuracy, stability, conservation, and dense output are considered for the general case when N different Runge-Kutta methods are grouped into a single composite method. Then, implicit-explicit, N=2, additive Runge-Kutta ARK methods from third- to fifth-order are presented that allow for integration of stiff terms by an L-stable, stiffly-accurate explicit, singly diagonally implicit Runge-Kutta (ESDIRK) method while the nonstiff terms are integrated with a traditional explicit Runge-Kutta method (ERK). Coupling error terms are of equal order to those of the elemental methods. Derived ARK methods have vanishing stability functions for very large values of the stiff scaled eigenvalue and retain high stability efficiency in the absence of stiffness.