Stratosphere Troposphere Interactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stratosphere Troposphere Interactions PDF full book. Access full book title Stratosphere Troposphere Interactions.

Stratosphere Troposphere Interactions

Stratosphere Troposphere Interactions
Author: K. Mohanakumar
Publisher: Springer Science & Business Media
Total Pages: 424
Release: 2008-07-03
Genre: Science
ISBN: 1402082177

Download Stratosphere Troposphere Interactions Book in PDF, ePub and Kindle

Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.


Model Sensitivities and Stratosphere-troposphere Interactions

Model Sensitivities and Stratosphere-troposphere Interactions
Author: Alice Flint
Publisher:
Total Pages:
Release: 2012
Genre:
ISBN:

Download Model Sensitivities and Stratosphere-troposphere Interactions Book in PDF, ePub and Kindle

In recent years it has been shown that the troposphere is affected by changes in the climate of the stratosphere as well as vice versa. Investigating the downward influence has implications for understanding not only past climate but also for predicting future climate. A simplified, Newtonian-forced general circulation model is used to investigate the impact of changes in the stratosphere on the tropospheric circulation. First the sensitivity of tropospheric climate, tropospheric climate variability and response to stratospheric forcing to the surface temperature relaxation timescale are investigated. Changes to this parameter are shown to have significant impact on the model's climatology, influencing both the thermal structure of the lower troposphere and the position of the eddy driven mid-latitude jet. The change in mean tropospheric climate influences the annular variability, including its timescale. A strong relationship between this timescale and the magnitude of response to forcing is found, which is consistent with the fluctuation - dissipation theorem. The tropospheric response for both the surface parameter experiments and stratospheric temperature forcings is shown to be remarkably similar. This indicates that the same dynamical feedbacks are triggered, and thus resulting in the same annular mode-like response. Further, the impact of an improved representation of the stratosphere (in a model of greater vertical extent) and its effect on the response to a range of stratospheric heating perturbations is investigated. The extent of the heating perturbations, both in latitude and altitude, are shown to have a significant impact on the tropospheric response. These experiments further reveal an influence of the tropospheric eddy response back onto the stratospheric forcing region which modifies the direct stratospheric response to the heating. This suggests a strong two way coupling between the lower stratosphere and the tropospheric jets and storm track eddies.


Sub-seasonal to Seasonal Prediction

Sub-seasonal to Seasonal Prediction
Author: Andrew Robertson
Publisher: Elsevier
Total Pages: 585
Release: 2018-10-19
Genre: Science
ISBN: 012811715X

Download Sub-seasonal to Seasonal Prediction Book in PDF, ePub and Kindle

The Gap Between Weather and Climate Forecasting: Sub-seasonal to Seasonal Prediction is an ideal reference for researchers and practitioners across the range of disciplines involved in the science, modeling, forecasting and application of this new frontier in sub-seasonal to seasonal (S2S) prediction. It provides an accessible, yet rigorous, introduction to the scientific principles and sources of predictability through the unique challenges of numerical simulation and forecasting with state-of-science modeling codes and supercomputers. Additional coverage includes the prospects for developing applications to trigger early action decisions to lessen weather catastrophes, minimize costly damage, and optimize operator decisions. The book consists of a set of contributed chapters solicited from experts and leaders in the fields of S2S predictability science, numerical modeling, operational forecasting, and developing application sectors. The introduction and conclusion, written by the co-editors, provides historical perspective, unique synthesis and prospects, and emerging opportunities in this exciting, complex and interdisciplinary field. Contains contributed chapters from leaders and experts in sub-seasonal to seasonal science, forecasting and applications Provides a one-stop shop for graduate students, academic and applied researchers, and practitioners in an emerging and interdisciplinary field Offers a synthesis of the state of S2S science through the use of concrete examples, enabling potential users of S2S forecasts to quickly grasp the potential for application in their own decision-making Includes a broad set of topics, illustrated with graphic examples, that highlight interdisciplinary linkages


Stratosphere - Troposphere Interaction During Stratospheric Sudden Warming Events

Stratosphere - Troposphere Interaction During Stratospheric Sudden Warming Events
Author: Daniela Iris Vera Domeisen
Publisher:
Total Pages: 192
Release: 2012
Genre:
ISBN:

Download Stratosphere - Troposphere Interaction During Stratospheric Sudden Warming Events Book in PDF, ePub and Kindle

The stratosphere and the troposphere exhibit a strong coupling during the winter months. However, the coupling mechanisms between the respective vertical layers are not fully understood. An idealized spectral core dynamical model is utilized in the present study in order to clarify the coupling timing, location and mechanisms. Since the coupling between the winter stratosphere and troposphere is strongly intensified during times of strong stratospheric variability such as stratospheric warmings, these events are simulated in the described model for the study of stratosphere - troposphere coupling, while for comparison the coupling is also assessed for weaker stratospheric variability. While the upward coupling by planetary-scale Rossby waves in the Northern Hemisphere is well understood, the Southern Hemisphere exhibits traveling wave patterns with a weaker impact on the stratospheric ow. However the tropospheric generation mechanism of these waves is not well understood and is investigated in this study. It is found that in the model atmosphere without a zonally asymmetric wave forcing, traveling waves are unable to induce a significant wave ux into the stratosphere. In the absence of synoptic eddy activity, however, the tropospheric ow is baroclinically unstable to planetary-scale waves, and the generated planetary waves are able to propagate into the stratosphere and induce sudden warmings comparable in frequency and strength to the Northern Hemisphere. While baroclinic instability of long waves may be further strengthened by the addition of moisture, the real atmosphere also exhibits strong synoptic eddy activity, and it will have to be further explored if the atmosphere exhibits periods where synoptic eddies are weak enough to allow for baroclinic instability of long waves. In order to further investigate the coupling between the stratosphere and the troposphere, cases of strong coupling are investigated in the analysis of a Northern Hemisphere - like winter atmosphere. A realistic frequency and strength of sudden warmings is obtained using a zonal wave-2 topographic forcing. An angular momentum budget analysis yields that the Eliassen-Palm (EP) flux is closely balanced by the residual circulation dominated by the Coriolis term on a daily basis, while the change in zonal wind is a small residual between these dominant terms. In the stratosphere, the EP flux term and the Coriolis term balance well in time but not exactly in magnitude, yielding a polar stratospheric weakening of the zonal mean wind as observed during stratospheric warmings. In the troposphere, the loss of angular momentum before a sudden warming induces a weak negative annular mode response, which is amplified by the downward propagating signal about three weeks after the sudden warming. The angular momentum budget does not reveal the mechanism of downward influence, but it nevertheless clarifies the momentum balance of the stratosphere - troposphere system, indicating that the effects of the waves and the residual circulation have to be considered at the same time. Since the annular mode response cannot be directly investigated using the angular momentum budget, the annular mode coupling between the stratosphere and the troposphere is further investigated using a statistical approach. The annular mode response is often framed in terms of Empirical Orthogonal Functions (EOFs), but it is here found that for the stratosphere - troposphere system with its strong vertical pressure gradient, EOFs are strongly dependent on the weighting of the data, while Principal Oscillation Patterns (POPs) are considerably less sensitive to an applied weighting while returning the dominant structures of variability. This encourages further research and application of POP modes for the use of stratosphere - troposphere coupling. These findings represent an improvement of the understanding of stratosphere - troposphere coupling and the results are another step in the direction of finding the mechanism of stratosphere - troposphere coupling and the downward influence after the occurrence of a stratospheric sudden warming, which may influence long-term weather prediction in the troposphere.


Stratosphere Troposphere Interactions

Stratosphere Troposphere Interactions
Author: K. Mohanakumar
Publisher: Springer Science & Business Media
Total Pages: 424
Release: 2008-07-03
Genre: Science
ISBN: 1402082169

Download Stratosphere Troposphere Interactions Book in PDF, ePub and Kindle

Stratospheric processes play a signi?cant role in regulating the weather and c- mate of the Earth system. Solar radiation, which is the primary source of energy for the tropospheric weather systems, is absorbed by ozone when it passes through the stratosphere, thereby modulating the solar-forcing energy reaching into the t- posphere. The concentrations of the radiatively sensitive greenhouse gases present in the lower atmosphere, such as water vapor, carbon dioxide, and ozone, control the radiation balance of the atmosphere by the two-way interaction between the stratosphere and troposphere. The stratosphere is the transition region which interacts with the weather s- tems in the lower atmosphere and the richly ionized upper atmosphere. Therefore, this part of the atmosphere provides a long list of challenging scienti?c problems of basic nature involving its thermal structure, energetics, composition, dynamics, chemistry, and modeling. The lower stratosphere is very much linked dynamically, radiatively,and chemically with the upper troposphere,even though the temperature characteristics of these regions are different. The stratosphere is a region of high stability, rich in ozone and poor in water - por and temperature increases with altitude. The lower stratospheric ozone absorbs the harmful ultraviolet (UV) radiation from the sun and protects life on the Earth. On the other hand, the troposphere has high concentrations of water vapor, is low in ozone, and temperature decreases with altitude. The convective activity is more in the troposphere than in the stratosphere.


Dynamic Coupling and Chemical Transport Between the Stratosphere and the Troposphere

Dynamic Coupling and Chemical Transport Between the Stratosphere and the Troposphere
Author: Huang Yang
Publisher:
Total Pages: 158
Release: 2015
Genre:
ISBN:

Download Dynamic Coupling and Chemical Transport Between the Stratosphere and the Troposphere Book in PDF, ePub and Kindle

Although the stratosphere and troposphere are separately different in many aspects (thermal structure, dynamic circulation, chemical composition and etc.), studies in recent decades have indicated a much stronger connection between these two distinct layers. Dynamically, the stratospheric circulation is driven by the eddies that are dominantly generated in the troposphere, whereas the troospheric circulation varies, in some ocassion, mostly due to the circulation and eddy perturbation originated in the stratosphere. The exchange and transport between the two layers, on the other hand, tend to alter the chemical compostion on both sides, and hence induce subsequent influences on the chemistry and radiation within the two layers. In this study, we further enrich the understanding on the connection between the stratosphere and troposphere by examining their dynamic coupling and chemical exchange. We first investigate the dynamic impact from the troposphere to the stratosphere by examining the role of tropical sea surface temperature (SST). By designing several idealized SST forcing simulations in an aqua-planet model, we find that the zonal distribution of SST perturbations has a major impact on the vertical and meridional structure of the BDC as compared with other SST characteristics. Zonally localized SST heatings tend to generate a shallow acceleration of the stratospheric residual circulation, whereas SST heatings with a zonally symmetric structure tend to produce a deep strengthening of the stratospheric residual circulation. The shallow versus deep strengthening of the stratospheric residual circulation change has been linked to wave propagation and dissipation in the subtropical lower stratosphere rather than wave generation in the troposphere. The dynamic impact from the stratosphere to the troposphere is then discussed by focusing on the downward influence of polar stratospheric ozone depletion. Three possible mechanisms are examined in an idealized dry model: the polar stratospheric cooling impacts tropospheric synoptic eddies via (a) the direct influences on the lower stratospheric synoptic eddies, (b) the planetary wave-induced residual circulation, and (c) the planetary eddy - synoptic eddy nonlinear interaction. It is argued that the planetary wave-induced residual circulation is not the dominant mechanism, and that the planetary eddies and further nonlinear interaction with synoptic eddies are more likely the key to the downward influence of the ozone depletion-like cooling. Last, the chemical interaction between the stratosphere and troposphere is explored by quantifying the stratosphere-troposphere exchange (STE) of ozone. The specified dynamics (SD) version of the Whole Atmosphere Community Climate Model (WACCM) is used to estimate the ozone STE along different isentropic surfaces (isentropic ozone STE herein). Net troposphere-to-stratosphere ozone STE is diagnosed in the subtropics (350 K - 380 K), while net stratosphereto-troposphere ozone STE is diagnosed in the extratropics (280 K - 350 K), with different magnitudes and seasonalities over different isentropic (meridional) regions. Potential vorticity (PV) sources induced by both differential diabatic heating and isentropic mixing contribute to the diagnosed isentropic ozone STE flux, but the latter is slightly larger. Moreover, results in the SD-WACCM are generally consistent with the analysis in a different model, the SD version of the Canadian Middle Atmosphere Model (CMAM), but the SD-CMAM diagnoses a smaller STE flux. This difference is associated with the different extent of isentropic mixing between the two models.


The Dynamic Meteorology of the Stratosphere and Mesosphere

The Dynamic Meteorology of the Stratosphere and Mesosphere
Author: James Holton
Publisher: Springer
Total Pages: 221
Release: 2016-06-28
Genre: Science
ISBN: 1935704311

Download The Dynamic Meteorology of the Stratosphere and Mesosphere Book in PDF, ePub and Kindle

Interest in the meteorology of the stratosphere and mesophere has been simulated in the past few years by concerns over possible depletion of the ozone layer as a result of reactions involving pollutants introduced by human activities. Concurrently there has been an upsurge in research on various aspects of the meteorology of the stratosphere. This monograph provides an account of the fundamental dynamical processes which control the general circulation of the stratosphere and mesophere and are thus responsible for the transport of trace substances in that region of the atmosphere. Principles necessary for understanding the dynamics of large-scale motions in the stratosphere and mesosphere are systematically developed so that this monograph should prove useful not only as a reference work for research scientists, but as a textbook for courses in dynamic meteorology of the upper atmosphere.


Dynamic Interactions Between the Troposphere and Stratosphere

Dynamic Interactions Between the Troposphere and Stratosphere
Author: James Paul Koermer
Publisher:
Total Pages: 200
Release: 1980
Genre: Stratosphere
ISBN:

Download Dynamic Interactions Between the Troposphere and Stratosphere Book in PDF, ePub and Kindle

A primitive equation spectral model using spherical harmonics is formulated to study interactions between the troposphere and stratosphere in association with sudden stratospheric warmings. In order to follow vertical wave propagation so important to this process, the model consists of 31 levels with 5 in the troposphere and the other 26 in the stratosphere and mesosphere. Using sigma coordinates for the former and log-pressure coordinates for the latter, separate equations for each system are combined to form a single matrix governing equations. The gradual introduction of planetry scale topography to an initially balanced state representative of observed mean winter conditions in the Northern Hemisphere is used to force changes in the initial field during 40 day time integrations. Utilizing the same initial tropospheric conditions, three cases were run. The first case started with a weak polar night jet in the stratosphere and mesosphere. The second case had a much stronger polar vortex. For the third case, a lid was placed on the troposphere and no interaction was allowed with the atmosphere at higher levels. Results of these integrations indicate that realistic stratospheric warmings can be simulated by simple orographic forcing.


The Stratosphere

The Stratosphere
Author: Karin G. Labitzke
Publisher: Springer Science & Business Media
Total Pages: 239
Release: 2012-12-06
Genre: Science
ISBN: 3642585418

Download The Stratosphere Book in PDF, ePub and Kindle

This book presents the history, phenomena, and relevance of the stratosphere. Beginning with the discovery of the stratosphere itself, the book explores various unexpected phenomena observed in the stratosphere, such as the ozone hole in 1984 and the influence of the 11-year solar cycle in 1987. It describes the interrelations of stratospheric phenomena and its effects on the variability of the climate system, as well as examines various human impacts on the system such as the decrease in the ozone layer.