Stable Numerical Schemes For Fluids Structures And Their Interactions PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Stable Numerical Schemes For Fluids Structures And Their Interactions PDF full book. Access full book title Stable Numerical Schemes For Fluids Structures And Their Interactions.

Stable Numerical Schemes for Fluids, Structures and their Interactions

Stable Numerical Schemes for Fluids, Structures and their Interactions
Author: Cornel Marius Murea
Publisher: Elsevier
Total Pages: 210
Release: 2017-09-01
Genre: Technology & Engineering
ISBN: 0081023804

Download Stable Numerical Schemes for Fluids, Structures and their Interactions Book in PDF, ePub and Kindle

This book presents numerical algorithms for solving incompressible fluids, elastic structures and fluid-structure interactions. It collects some of the fundamental finite element methods as well as new approaches.For Stokes and Navier-Stokes equations, the mixed finite element method is employed. An arbitrary Lagrangian Eulerian framework is used for fluids in a moving domain. Schemes for linear and St Venant-Kirchhoff non-linear dynamic elasticity are presented. For fluid-structure interaction, two schemes are analyzed: the first is fully implicit and the second is semi-implicit, where the fluid domain is computed explicitly and consequently the computational time is considerably reduced.The stability of the schemes is proven in this self-contained book. Every chapter is supplied with numerical tests for the reader. These are aimed at Masters students in Mathematics or Mechanical Engineering. Presents a self-contained monograph of schemes for fluid and elastic structures, including their interactions Provides a numerical analysis of schemes for Stokes and Navier-Stokes equations Covers dynamic linear and non-linear elasticity and fluid-structure interaction


Fluid-structure Interactions

Fluid-structure Interactions
Author: Thomas Richter
Publisher: Springer
Total Pages: 452
Release: 2017-08-26
Genre: Mathematics
ISBN: 3319639706

Download Fluid-structure Interactions Book in PDF, ePub and Kindle

This book starts by introducing the fundamental concepts of mathematical continuum mechanics for fluids and solids and their coupling. Special attention is given to the derivation of variational formulations for the subproblems describing fluid- and solid-mechanics as well as the coupled fluid-structure interaction problem. Two monolithic formulations for fluid-structure interactions are described in detail: the well-established ALE formulation and the modern Fully Eulerian formulation, which can effectively deal with problems featuring large deformation and contact. Further, the book provides details on state-of-the-art discretization schemes for fluid- and solid-mechanics and considers the special needs of coupled problems with interface-tracking and interface-capturing techniques. Lastly, advanced topics like goal-oriented error estimation, multigrid solution and gradient-based optimization schemes are discussed in the context of fluid-structure interaction problems.


Fluid-structure Interaction

Fluid-structure Interaction
Author: Cedric Leblond
Publisher: John Wiley & Sons
Total Pages: 404
Release: 2022-11-30
Genre: Science
ISBN: 1394188218

Download Fluid-structure Interaction Book in PDF, ePub and Kindle

This book provides a comprehensive overview of the numerical simulation of fluid–structure interaction (FSI) for application in marine engineering. Fluid–Structure Interaction details a wide range of modeling methods (numerical, semi-analytical, empirical), calculation methods (finite element, boundary element, finite volume, lattice Boltzmann method) and numerical approaches (reduced order models and coupling strategy, among others). Written by a group of experts and researchers from the naval sector, this book is intended for those involved in research or design who are looking to gain an overall picture of hydrodynamics, seakeeping and performance under extreme loads, noise and vibration. Using a concise, didactic approach, the book describes the ways in which numerical simulation contributes to modeling and understanding fluid–structure interaction for designing and optimizing the ships of the future.


Stability of Numerical Interface Conditions for Fluid/Structure Interaction

Stability of Numerical Interface Conditions for Fluid/Structure Interaction
Author:
Publisher:
Total Pages: 22
Release: 2009
Genre:
ISBN:

Download Stability of Numerical Interface Conditions for Fluid/Structure Interaction Book in PDF, ePub and Kindle

In multi physics computations, where a compressible fluid is coupled with a linearly elastic solid, it is standard to enforce continuity of the normal velocities and of the normal stresses at the interface between the fluid and the solid. In a numerical scheme, there are many ways that the velocity- and stress-continuity can be enforced in the discrete approximation. This paper performs a normal mode analysis to investigate the stability of different numerical interface conditions for a model problem approximated by upwind type of finite difference schemes. The analysis shows that depending on the ratio of densities between the solid and the fluid, some numerical interface conditions are stable up to the maximal CFL-limit, while other numerical interface conditions suffer from a severe reduction of the stable CFL-limit. The paper also presents a new interface condition, obtained as a simplified charcteristic boundary condition, that is proved to not suffer from any reduction of the stable CFL-limit. Numerical experiments in one space dimension show that the new interface condition is stable also for computations with the non-linear Euler equations of compressible fluid flow coupled with a linearly elastic solid.


Numerical Simulation, An Art of Prediction 1

Numerical Simulation, An Art of Prediction 1
Author: Jean-François Sigrist
Publisher: John Wiley & Sons
Total Pages: 276
Release: 2020-04-14
Genre: Mathematics
ISBN: 1786304317

Download Numerical Simulation, An Art of Prediction 1 Book in PDF, ePub and Kindle

Numerical simulation is a technique of major importance in various technical and scientific fields. Used to understand diverse physical phenomena or to design everyday objects, it plays a major role in innovation in the industrial sector. Whilst engineering curricula now include training courses dedicated to it, numerical simulation is still not well-known in some economic sectors, and even less so among the general public. Simulation involves the mathematical modeling of the real world, coupled with the computing power offered by modern technology. Designed to perform virtual experiments, digital simulation can be considered as an "art of prediction". Embellished with a rich iconography and based on the testimony of researchers and engineers, this book shines a light on this little-known art. It is the first of two volumes and focuses on the principles, methods and industrial practice of numerical modeling.


Numerical Simulation, An Art of Prediction, Volume 2

Numerical Simulation, An Art of Prediction, Volume 2
Author: Jean-François Sigrist
Publisher: John Wiley & Sons
Total Pages: 374
Release: 2020-01-09
Genre: Mathematics
ISBN: 1119694698

Download Numerical Simulation, An Art of Prediction, Volume 2 Book in PDF, ePub and Kindle

Numerical simulation is a technique of major importance in various technical and scientific fields. Whilst engineering curricula now include training courses dedicated to it, numerical simulation is still not well-known in some economic sectors, and even less so among the general public. Simulation involves the mathematical modeling of the real world, coupled with the computing power offered by modern technology. Designed to perform virtual experiments, digital simulation can be considered as an "art of prediction". Embellished with a rich iconography and based on the testimony of researchers and engineers, this book shines a light on this little-known art. It is the second of two volumes and gives examples of the uses of numerical simulation in various scientific and technical fields: agriculture, industry, Earth and universe sciences, meteorology and climate studies, energy, biomechanics and human and social sciences.


Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction

Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction
Author: M'hamed Souli
Publisher: John Wiley & Sons
Total Pages: 189
Release: 2013-03-01
Genre: Technology & Engineering
ISBN: 1118618688

Download Arbitrary Lagrangian Eulerian and Fluid-Structure Interaction Book in PDF, ePub and Kindle

This book provides the fundamental basics for solving fluid structure interaction problems, and describes different algorithms and numerical methods used to solve problems where fluid and structure can be weakly or strongly coupled. These approaches are illustrated with examples arising from industrial or academic applications. Each of these approaches has its own performance and limitations. The added mass technique is described first. Following this, for general coupling problems involving large deformation of the structure, the Navier-Stokes equations need to be solved in a moving mesh using an ALE formulation. The main aspects of the fluid structure coupling are then developed. The first and by far simplest coupling method is explicit partitioned coupling. In order to preserve the flexibility and modularity that are inherent in the partitioned coupling, we also describe the implicit partitioned coupling using an iterative process. In order to reduce computational time for large-scale problems, an introduction to the Proper Orthogonal Decomposition (POD) technique applied to FSI problems is also presented. To extend the application of coupling problems, mathematical descriptions and numerical simulations of multiphase problems using level set techniques for interface tracking are presented and illustrated using specific coupling problems. Given the book's comprehensive coverage, engineers, graduate students and researchers involved in the simulation of practical fluid structure interaction problems will find this book extremely useful.


Fluid-Structure Interaction

Fluid-Structure Interaction
Author: Hans-Joachim Bungartz
Publisher: Springer Science & Business Media
Total Pages: 401
Release: 2007-06-24
Genre: Technology & Engineering
ISBN: 3540345965

Download Fluid-Structure Interaction Book in PDF, ePub and Kindle

This volume in the series Lecture Notes in Computational Science and Engineering presents a collection of papers presented at the International Workshop on FSI, held in October 2005 in Hohenwart and organized by DFG's Research Unit 493 "FSI: Modeling, Simulation, and Optimization". The papers address partitioned and monolithic coupling approaches, methodical issues and applications, and discuss FSI from the mathematical, informatics, and engineering points of view.


Fluid Structure Interaction II

Fluid Structure Interaction II
Author: Hans-Joachim Bungartz
Publisher: Springer Science & Business Media
Total Pages: 430
Release: 2010-09-28
Genre: Computers
ISBN: 3642142060

Download Fluid Structure Interaction II Book in PDF, ePub and Kindle

Fluid-structure interactions (FSI), i.e., the interplay of some moveable or deformable structure with an internal or surrounding fluid, are among the most widespread and most challenging coupled or multi-physics problems. Although much has been accomplished in developing good computational FSI methods and despite convincing solutions to a number of classes of problems including those presented in this book, there is a need for more comprehensive studies showing that the computational methods proposed are reliable, robust, and efficient beyond the classes of problems they have successfully been applied to.This volume of LNCSE, a sequel to vol. 53, which contained, among others, the first numerical benchmark for FSI problems and has received considerable attention since then, presents a collection of papers from the "First International Workshop on Computational Engineering - special focus FSI," held in Herrsching in October 2009 and organized by three DFG-funded consortia. The papers address all relevant aspects of FSI simulation and discuss FSI from the mathematical, informatical, and engineering perspective.


Developing Numerical Methods for Fully-coupled Nonlinear Fluid-structure Interaction Problems

Developing Numerical Methods for Fully-coupled Nonlinear Fluid-structure Interaction Problems
Author: Alireza Naseri
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download Developing Numerical Methods for Fully-coupled Nonlinear Fluid-structure Interaction Problems Book in PDF, ePub and Kindle

This thesis is dedicated to developing numerical methods to solve fluid-structure interaction (FSI) problems. FSI features in a vast range of physical systems and has a wide application in engineering. The work of this thesis is focused on the partitioned methods, mostly due to their features of modularity, robustness and reliability. In a partitioned approach, separate solvers are used for the fluid and structural sub-problem domains and a coupling method is devised to account for their mutual interaction. Moreover, the thesis is focused on FSI problems with strong added-mass effect, which are more challenging to solve numerically. For such FSI problems, normally an implicit partitioned method is used which enforces the coupling conditions on the interface through coupling iterations between the fluid and structural solvers. However, these methods are computationally expensive. In this work we follow a semi-implicit approach to develop stable, efficient and accurate numerical methods for FSI problems. In these methods, the fluid pressure term is segregated and strongly coupled to the structure via coupling iterations. However, the remaining fluid terms and the geometrical nonlinearities are treated explicitly. Strong coupling of the fluid pressure term provides for the stability of the method in FSI problems with strong added-mass effect, while loose coupling of the remaining terms reduces the computational cost of the simulations. The work of this thesis could be divided into three major parts. In the first part, we have developed a simple, efficient and robust semi-implicit coupling method for FSI problems with strong added-mass effect. The proposed method is simple and modular. An extensive set of numerical tests were carried out and the results were compared both to literature data (numerical and experimental), as well as domestic results obtained by using a fully-implicit coupling method. Results showed that the proposed method considerably reduces the computational cost of the simulations without degrading the stability or accuracy of the solution. Moreover, the robustness of the method is demonstrated through numerical tests. Furthermore, we have tried to further analyze the semi-implicit methods in order to gain a better understanding of several unaddressed issues concerning different aspects of these methods. The second major part of this thesis is focused on the temporal accuracy of the semi-implicit coupling methods for FSI problems. The semi-implicit methods in the literature appear to be only first-order in time. Most semi-implicit methods rely on using a projection method for the fluid equations, while extending the temporal accuracy of the projection methods is not straightforward. Moreover, mesh-conforming FSI solution methods require solving the ALE form of the Navier-Stokes equations on a moving mesh, which does not necessarily preserve the order of accuracy of the method on a fixed grid. Furthermore, if the FSI coupling technique is not properly designed, the second-order accuracy for the coupled problem is not guaranteed, even though each sub-problem possessed such accuracy. In this work, we have proposed a second-order time accurate semi-implicit method for FSI problems and demonstrated its second-order accuracy through rigorous numerical tests. The last major part of this thesis is concerned with computational efficiency and parallel scalability of the developed methods for numerical solution of complex FSI problems on massively-parallel supercomputers. We have presented a scalable parallel framework for partitioned solution of FSI problems through multi-code coupling. Two instances of our in-house software is used to solve the fluid and structural sub-problems. The communication between the single-physics solvers are carried out using an external coupling library. Parallel efficiency and scalability of the coupled framework is demonstrated in solving practical FSI test cases.