Special Issue Correlations In Cold Gases PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Special Issue Correlations In Cold Gases PDF full book. Access full book title Special Issue Correlations In Cold Gases.

NBS Special Publication

NBS Special Publication
Author:
Publisher:
Total Pages: 360
Release: 1971
Genre: Weights and measures
ISBN:

Download NBS Special Publication Book in PDF, ePub and Kindle


Handbook of Multiphase Flow Assurance

Handbook of Multiphase Flow Assurance
Author: Taras Y. Makogon
Publisher: Gulf Professional Publishing
Total Pages: 490
Release: 2019-06-04
Genre: Technology & Engineering
ISBN: 0128130636

Download Handbook of Multiphase Flow Assurance Book in PDF, ePub and Kindle

Handbook of Multiphase Flow Assurance allows readers to progress in their understanding of basic phenomena and complex operating challenges. The book starts with the fundamentals, but then goes on to discuss phase behavior, fluid sampling, fluid flow properties and fluid characterization. It also covers flow assurance impedance, deliverability, stability and integrity issues, as well as hydraulic, thermal and risk analysis. The inclusion of case studies and references helps provide an industrial focus and practical application that makes the book a novel resource for flow assurance management and an introductory reference for engineers just entering the field of flow assurance. Starts with flow assurance fundamentals, but also includes more complex operating challenges Brings together cross-disciplinary discussions and solutions of flow assurance in a single text Offers case studies and reference guidelines for practical applications


Noble Gas Chemistry

Noble Gas Chemistry
Author: Felice Grandinetti
Publisher: John Wiley & Sons
Total Pages: 359
Release: 2018-06-22
Genre: Science
ISBN: 3527803521

Download Noble Gas Chemistry Book in PDF, ePub and Kindle

Authored by one of the world's leading experts in the chemistry of lighter noble gases, this comprehensive monograph fills the need for an up-to-date review of the diverse experimental techniques and theoretical methods currently in practice. After reviewing the experiments breaking the paradigm of "non-reactive" noble gases, the physico-chemical background is introduced. Besides the emphasis on gas phase reactions, the author presents other relevant systems, such as chemistry in the bulk phase, under high pressure, and cold matrices. The discussion of gas-phase chemistry of the noble gases covers neutral and ionic compounds, diatomic molecules, complexes with small molecules and metal compounds, up to large clusters.


Out of Equilibrium Phenomena in Ultra-cold Gases

Out of Equilibrium Phenomena in Ultra-cold Gases
Author: Stefan Surhash Natu
Publisher:
Total Pages: 208
Release: 2013
Genre:
ISBN:

Download Out of Equilibrium Phenomena in Ultra-cold Gases Book in PDF, ePub and Kindle

The study of out-of-equilibrium dynamics in ultra-cold gases is a new and exciting field, driven largely by the recent experimental advances in controlling and imaging cold clouds. The experimental and theoretical work thus far has been somewhat exploratory and largely numerical in nature, as the very paradigms for thinking about these systems are not well established. In this thesis I consider several different scenarios of ultra-cold bosonic and fermionic gases driven out of equilibrium and study their properties. In Chapter 1, I provide an overview of the phenomenology of ultra-cold gases, highlighting the timescales governing these systems and how the experimentalist can tune them. I discuss how cold gases can be cooled and trapped and discuss the basic physics behind optical lattices. I also discuss experimental probes of these gases, in particular the new high resolution imaging techniques developed recently at Chicago, Munich and Harvard. In Chapter 2, I discuss an early experiment (circa. 2008) which observed long lived spin dynamics in a thermal spin-1/2 Fermi gas. This experiment is an nice illustration of interesting physics resulting from the separation of timescales between spin and collisional dynamics. In my opinion, it is an excellent example of why cold gases are naturally suited to studying non-equilibrium dynamics. I simulate the experiment numerically using a collisionless Boltzmann equation and explain the observed spin dynamics both qualitatively and quantitively. In Chapter 3, I continue the discussion of spin waves in thermal gases by extending previous works on spin-1/2 gases to spin-1 Bose gases. In contrast to Chapter 2, the bulk of the work in this Chapter is analytic in nature. In particular, I find a spin wave instability in the thermal spin-1 Bose gas, which is the high temperature analog of the polar to ferromagnetic transition in a spin-1 Bose Einstein condensate. In Chapter 3, I turn my attention to bosonic systems and briefly review the the Bogoliubov mean-field theory. I calculate the momentum distribution and density-density correlation function of an interacting Bose gas within the Bogoliubov framework. Then I consider bosons in an optical lattice, and introduce the Bose Hubbard model. I calculate the mean-field phase diagram of the Bose Hubbard model and then consider fluctuations about the mean field, and derive the excitation spectrum of the lattice gas in the superfluid and insulating regimes. In Chapter 4, I ask what we learn by studying the dynamics of correlation functions following a sudden change in the interactions in a superfluid. Using the Bogoliubov theory developed in Chapter 3, I will show how the underlying excitation spectrum influences the long and short time behavior of the correlation functions. By considering a lattice dispersion, I study the analogous problem in a weak optical lattice and discuss how the lattice dispersion leads to additional features in the correlation functions. I will also discuss the timescale governing the revival of the condensate fraction in a quantum depleted gas. In Chapter 5, I derive equations of motion governing the dynamics of one and two body correlation functions in the single-band Bose Hubbard model, applicable to bosons in deep lattices. I then consider a simple quench from a Mott insulating initial state to a weakly interacting final state and produce analytic expressions describing the dynamics of correlations following such a quench. I discuss the timescale for the development of long range order following such a quench. I study the problem of chapter 4 using an equations of motion approach. This approach complements the Bogoliubov approach of Chapter 4. First, I derive exact expressions for a quench to a non-interacting state. I then consider how interactions redistribute quasi-momentum to first order in perturbation theory in different dimensions. In Chapter 6, I calculate the relevant timescales for local and global dynamics in trapped lattice Bose gases, a work done in collaboration with Dr. Kaden R.A Hazzard. Using a time-dependent Gutzwiller mean-field theory, I show that the timescale for local equilibration in these systems is fast in experimental terms. I then show that due to the spatial inhomogeneities inherent to cold gases, achieving global equilibrium can be quite complicated, sometimes taking longer than the lifetime of the experiment, an issue of practical importance to current day experiments. I continue this discussion in Chapter 7 which is a collaborative work with experimentalists David McKay and Prof. Brian DeMarco from the University of Toronto and the University of Illinois, Urbana Champaign. Using experimental and numerical methods, we show that the rapid timescales for local dynamics in interacting systems invalidates a frequently used cold atom technique for mapping out the momentum distribution of atoms in an optical lattice.


NIST Special Publication

NIST Special Publication
Author:
Publisher:
Total Pages: 82
Release: 2001
Genre: Weights and measures
ISBN:

Download NIST Special Publication Book in PDF, ePub and Kindle


Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques

Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques
Author: Mohammad Zaman
Publisher: Springer Nature
Total Pages: 375
Release: 2021-01-29
Genre: Science
ISBN: 3030553965

Download Measuring Emission of Agricultural Greenhouse Gases and Developing Mitigation Options using Nuclear and Related Techniques Book in PDF, ePub and Kindle

This open access book is an outcome of the collaboration between the Soil and Water Management & Crop Nutrition Section, Joint FAO/IAEA Division of Nuclear Techniques in Food and Agriculture, Department of Nuclear Sciences and Applications, International Atomic Energy Agency (IAEA), Vienna, Austria, and the German Science Foundation research unit DASIM (Denitrification in Agricultural Soils: Integrated control and Modelling at various scales) and other institutes. It presents protocols, methodologies and standard operating procedures (SOPs) for measuring GHGs from different agroecosystems and animals using isotopic and related techniques that can also be used to validate climate-smart agricultural practices to mitigate GHGs. The material featured is useful for beginners in the field wanting an overview of the current methodologies, but also for experts who need hands-on descriptions of said methodologies. The book is written in form of a monograph and consists of eight chapters.