Simulation Driven Design By Knowledge Based Response Correction Techniques PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Simulation Driven Design By Knowledge Based Response Correction Techniques PDF full book. Access full book title Simulation Driven Design By Knowledge Based Response Correction Techniques.

Simulation-Driven Design by Knowledge-Based Response Correction Techniques

Simulation-Driven Design by Knowledge-Based Response Correction Techniques
Author: Slawomir Koziel
Publisher: Springer
Total Pages: 262
Release: 2016-05-13
Genre: Mathematics
ISBN: 3319301152

Download Simulation-Driven Design by Knowledge-Based Response Correction Techniques Book in PDF, ePub and Kindle

Focused on efficient simulation-driven multi-fidelity optimization techniques, this monograph on simulation-driven optimization covers simulations utilizing physics-based low-fidelity models, often based on coarse-discretization simulations or other types of simplified physics representations, such as analytical models. The methods presented in the book exploit as much as possible any knowledge about the system or device of interest embedded in the low-fidelity model with the purpose of reducing the computational overhead of the design process. Most of the techniques described in the book are of response correction type and can be split into parametric (usually based on analytical formulas) and non-parametric, i.e., not based on analytical formulas. The latter, while more complex in implementation, tend to be more efficient. The book presents a general formulation of response correction techniques as well as a number of specific methods, including those based on correcting the low-fidelity model response (output space mapping, manifold mapping, adaptive response correction and shape-preserving response prediction), as well as on suitable modification of design specifications. Detailed formulations, application examples and the discussion of advantages and disadvantages of these techniques are also included. The book demonstrates the use of the discussed techniques for solving real-world engineering design problems, including applications in microwave engineering, antenna design, and aero/hydrodynamics.


Simulation-Driven Design Optimization and Modeling for Microwave Engineering

Simulation-Driven Design Optimization and Modeling for Microwave Engineering
Author: Slawomir Koziel
Publisher: World Scientific
Total Pages: 526
Release: 2013
Genre: Technology & Engineering
ISBN: 1848169175

Download Simulation-Driven Design Optimization and Modeling for Microwave Engineering Book in PDF, ePub and Kindle

On the other hand, various interactions between microwave devices and their environment, such as feeding structures and housing, must be taken into account, and this is only possible through full-wave EM analysis. Electromagnetic simulations can be highly accurate, but they tend to be computationally expensive. Therefore, practical design optimization methods have to be computationally efficient, so that the number of CPU-intensive high-fidelity EM simulations is reduced as much as possible during the design process. For the same reasons, techniques for creating fast yet accurate models of microwave structures become crucially important. In this edited book, the authors strive to review the state-of-the-art simulation-driven microwave design optimization and modeling. A group of international experts specialized in various aspects of microwave computer-aided design summarize and review a wide range of the latest developments and real-world applications.


Performance-Driven Surrogate Modeling of High-Frequency Structures

Performance-Driven Surrogate Modeling of High-Frequency Structures
Author: Slawomir Koziel
Publisher: Springer Nature
Total Pages: 411
Release: 2020-02-19
Genre: Technology & Engineering
ISBN: 303038926X

Download Performance-Driven Surrogate Modeling of High-Frequency Structures Book in PDF, ePub and Kindle

This book discusses surrogate modeling of high-frequency structures including antenna and microwave components. The focus is on constrained or performance-driven surrogates. The presented techniques aim at addressing the limitations of conventional modeling methods, pertinent to the issues of dimensionality and parameter ranges that need to be covered by the surrogate to ensure its design utility. Within performance-driven methodologies, mitigation of these problems is achieved through appropriate confinement of the model domain, focused on the regions promising from the point of view of the relevant design objectives. This enables the construction of reliable surrogates at a fraction of cost required by conventional methods, and to accomplish the modeling tasks where other techniques routinely fail. The book provides a broad selection of specific frameworks, extensively illustrated using examples of real-world microwave and antenna structures along with numerous design examples. Furthermore, the book contains introductory material on data-driven and physics-based surrogates. The book will be useful for the readers working in the area of high-frequency electronics, including microwave engineering, antenna design, microwave photonics, magnetism, especially those that utilize electromagnetic (EM) simulation models in their daily routines. Covers performance-driven and constrained modeling methods, not available in other books to date; Discusses of a wide range of practical case studies including a variety of microwave and antenna structures; Includes design applications of the presented modeling frameworks, including single- and multi-objective parametric optimization.


Surrogate Modeling For High-frequency Design: Recent Advances

Surrogate Modeling For High-frequency Design: Recent Advances
Author: Slawomir Koziel
Publisher: World Scientific
Total Pages: 467
Release: 2022-03-04
Genre: Technology & Engineering
ISBN: 1800610769

Download Surrogate Modeling For High-frequency Design: Recent Advances Book in PDF, ePub and Kindle

Contemporary high-frequency engineering design heavily relies on full-wave electromagnetic (EM) analysis. This is primarily due to its versatility and ability to account for phenomena that are important from the point of view of system performance. Unfortunately, versatility comes at the price of a high computational cost of accurate evaluation. Consequently, utilization of simulation models in the design processes is challenging although highly desirable. The aforementioned problems can be alleviated by means of surrogate modeling techniques, the most popular of which are data-driven models. Although a large variety of methods are available, they are all affected by the curse of dimensionality. This is especially pronounced in high-frequency electronics, where typical system responses are highly nonlinear. Construction of practically useful surrogates covering wide ranges of parameters and operating conditions is a considerable challenge.Surrogate Modeling for High-Frequency Design presents a selection of works representing recent advancements in surrogate modeling and their applications to high-frequency design. Some chapters provide a review of specific topics such as neural network modeling of microwave components, while others describe recent attempts to improve existing modeling methodologies. Furthermore, the book features numerous applications of surrogate modeling methodologies to design optimization and uncertainty quantification of antenna, microwave, and analog RF circuits.


Computational Science – ICCS 2020

Computational Science – ICCS 2020
Author: Valeria V. Krzhizhanovskaya
Publisher: Springer Nature
Total Pages: 618
Release: 2020-06-18
Genre: Computers
ISBN: 3030504263

Download Computational Science – ICCS 2020 Book in PDF, ePub and Kindle

The seven-volume set LNCS 12137, 12138, 12139, 12140, 12141, 12142, and 12143 constitutes the proceedings of the 20th International Conference on Computational Science, ICCS 2020, held in Amsterdam, The Netherlands, in June 2020.* The total of 101 papers and 248 workshop papers presented in this book set were carefully reviewed and selected from 719 submissions (230 submissions to the main track and 489 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track Part III: Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Computational Methods in Artificial Intelligence and Machine Learning; Track of Biomedical and Bioinformatics Challenges for Computer Science Part IV: Track of Classifier Learning from Difficult Data; Track of Complex Social Systems through the Lens of Computational Science; Track of Computational Health; Track of Computational Methods for Emerging Problems in (Dis-)Information Analysis Part V: Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems; Track of Computer Graphics, Image Processing and Artificial Intelligence Part VI: Track of Data Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Meshfree Methods in Computational Sciences; Track of Multiscale Modelling and Simulation; Track of Quantum Computing Workshop Part VII: Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation; Track of Smart Systems: Bringing Together Computer Vision, Sensor Networks and Machine Learning; Track of Software Engineering for Computational Science; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Track of UNcErtainty QUantIficatiOn for ComputationAl modeLs *The conference was canceled due to the COVID-19 pandemic.


Computational Science – ICCS 2019

Computational Science – ICCS 2019
Author: João M. F. Rodrigues
Publisher: Springer
Total Pages: 744
Release: 2019-06-07
Genre: Computers
ISBN: 3030227448

Download Computational Science – ICCS 2019 Book in PDF, ePub and Kindle

The five-volume set LNCS 11536, 11537, 11538, 11539 and 11540 constitutes the proceedings of the 19th International Conference on Computational Science, ICCS 2019, held in Faro, Portugal, in June 2019. The total of 65 full papers and 168 workshop papers presented in this book set were carefully reviewed and selected from 573 submissions (228 submissions to the main track and 345 submissions to the workshops). The papers were organized in topical sections named: Part I: ICCS Main Track Part II: ICCS Main Track; Track of Advances in High-Performance Computational Earth Sciences: Applications and Frameworks; Track of Agent-Based Simulations, Adaptive Algorithms and Solvers; Track of Applications of Matrix Methods in Artificial Intelligence and Machine Learning; Track of Architecture, Languages, Compilation and Hardware Support for Emerging and Heterogeneous Systems Part III: Track of Biomedical and Bioinformatics Challenges for Computer Science; Track of Classifier Learning from Difficult Data; Track of Computational Finance and Business Intelligence; Track of Computational Optimization, Modelling and Simulation; Track of Computational Science in IoT and Smart Systems Part IV: Track of Data-Driven Computational Sciences; Track of Machine Learning and Data Assimilation for Dynamical Systems; Track of Marine Computing in the Interconnected World for the Benefit of the Society; Track of Multiscale Modelling and Simulation; Track of Simulations of Flow and Transport: Modeling, Algorithms and Computation Part V: Track of Smart Systems: Computer Vision, Sensor Networks and Machine Learning; Track of Solving Problems with Uncertainties; Track of Teaching Computational Science; Poster Track ICCS 2019 Chapter “Comparing Domain-decomposition Methods for the Parallelization of Distributed Land Surface Models” is available open access under a Creative Commons Attribution 4.0 International License via link.springer.com.


Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation

Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation
Author: Anna Pietrenko-Dabrowska
Publisher: Springer Nature
Total Pages: 604
Release: 2023-10-16
Genre: Technology & Engineering
ISBN: 3031438450

Download Response Feature Technology for High-Frequency Electronics. Optimization, Modeling, and Design Automation Book in PDF, ePub and Kindle

This book discusses response feature technology and its applications to modeling, optimization, and computer-aided design of high-frequency structures including antenna and microwave components. By exploring the specific structure of the system outputs, feature-based approaches facilitate simulation-driven design procedures, both in terms of improving their computational efficiency and reliability. These benefits are associated with the weakly nonlinear relationship between feature point coordinates and design variables, which—in the context of optimization—leads to inherent regularization of the objective functions. The book provides an overview of the subject, a definition and extraction of characteristic points, and feature-based design problem reformulation. It also outlines a number of numerical algorithms developed to handle local, global, and multi-criterial design, surrogate modeling, as well as uncertainty quantification. The discussed frameworks are extensively illustrated using examples of real microwave and antenna structures, along with numerous design cases. Introductory material on simulation-driven design, numerical optimization, as well as behavioral and physics-based surrogate modeling is also included. The book will be useful for readers working in the area of high-frequency electronics, including microwave engineering, antenna design, microwave photonics, magnetism and especially those who utilize electromagnetic (EM) simulation models in their daily routines.


Simulation-based Optimization Of Antenna Arrays

Simulation-based Optimization Of Antenna Arrays
Author: Slawomir Koziel
Publisher: World Scientific
Total Pages: 494
Release: 2019-02-13
Genre: Technology & Engineering
ISBN: 1786346001

Download Simulation-based Optimization Of Antenna Arrays Book in PDF, ePub and Kindle

The book addresses surrogate-assisted design of antenna arrays, in particular, how surrogate models, both data-driven and physics-based, can be utilized to expedite procedures such as parametric optimization, design closure, statistical analysis, or fault detection. Algorithms and design frameworks are illustrated using a large variety of examples including real-world printed-circuit antenna and antenna array structures.This unique compendium contains introductory materials concerning numerical optimization, both conventional (gradient-based and derivative-free, including metaheuristics) and surrogate-based, as well as a considerable selection of customized procedures developed specifically to handle antenna array problems. Recommendations concerning practical aspects of surrogate-assisted multi-objective antenna optimization are also given. The methods presented allow for cost-efficient handling of antenna array design problems (involving CPU-intensive EM models) in the context of design optimization and statistical analysis, which will benefit both researchers, designers and graduate students.


Simulation-Driven Aerodynamic Design Using Variable-Fidelity Models

Simulation-Driven Aerodynamic Design Using Variable-Fidelity Models
Author: Leifur Leifsson
Publisher: World Scientific
Total Pages: 444
Release: 2015-01-09
Genre: Technology & Engineering
ISBN: 1783266309

Download Simulation-Driven Aerodynamic Design Using Variable-Fidelity Models Book in PDF, ePub and Kindle

Computer simulations is a fundamental tool of the design process in many engineering disciplines including aerospace engineering. However, although high-fidelity numerical models are accurate, they can be computationally expensive with evaluation time for a single design as long as hours, days or even weeks. Simulation-driven design using conventional optimization techniques may be therefore prohibitive. This book explores the alternative: performing computationally efficient design using surrogate-based optimization, where the high-fidelity model is replaced by its computationally cheap but still reasonably accurate representation: a surrogate. The emphasis is on physics-based surrogates. Application-wise, the focus is on aerodynamics and the methods and techniques described in the book are demonstrated using aerodynamic shape optimization cases. Applications in other engineering fields are also demonstrated. State-of-the-art techniques and a depth of coverage never published before make this a unique and essential book for all researchers working in aerospace and other engineering areas and dealing with optimization, computationally expensive design problems, and simulation-driven design. Contents:Motivation and Problem Formulation:IntroductionAerodynamic Shape OptimizationOptimization Techniques:Simulation-Driven Design: Direct MethodsSurrogate-Based OptimizationSBO with Approximation-Based SurrogatesSBO with Physics-Based SurrogatesAerodynamics Modeling:Geometry ParameterizationHigh-Fidelity Aerodynamic ModelsLow-Fidelity Aerodynamics ModelsApplications:Transonic Airfoil Shape DesignTransonic Wing Shape DesignSubsonic Shape DesignSelected Applications of Surrogate-Based Optimization in Other AreasSurrogate-Based Optimization with MATLABConclusion:Practical Aspects of Variable-Fidelity Design Readership: Graduate students and researchers in the field of engineering, in particular, aerospace engineering. Key Features:Gathers a number of relevant techniques that were never compiled in one publication before, and certain state-of-the-art techniques have never been published in book formCompact and self-contained introduction to the area of surrogate-based optimization and variable-fidelity optimizationAt present, this is the only book available on the market that offers coverage of variable-fidelity optimization methodsKeywords:Aerodynamic Shape Optimization;Computational Fluid Dynamics (CFD);Surrogate Modeling;Surrogate-based Optimization;Variable-fidelity Simulations;Simulation-driven Design


Antenna Design by Simulation-Driven Optimization

Antenna Design by Simulation-Driven Optimization
Author: Slawomir Koziel
Publisher: Springer Science & Business Media
Total Pages: 141
Release: 2014-02-12
Genre: Mathematics
ISBN: 3319043676

Download Antenna Design by Simulation-Driven Optimization Book in PDF, ePub and Kindle

This Brief reviews a number of techniques exploiting the surrogate-based optimization concept and variable-fidelity EM simulations for efficient optimization of antenna structures. The introduction of each method is illustrated with examples of antenna design. The authors demonstrate the ways in which practitioners can obtain an optimized antenna design at the computational cost corresponding to a few high-fidelity EM simulations of the antenna structure. There is also a discussion of the selection of antenna model fidelity and its influence on performance of the surrogate-based design process. This volume is suitable for electrical engineers in academia as well as industry, antenna designers and engineers dealing with computationally-expensive design problems.