Semiparametric Regression Analysis Of Longitudinal Data With Informative Observation Times PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Semiparametric Regression Analysis Of Longitudinal Data With Informative Observation Times PDF full book. Access full book title Semiparametric Regression Analysis Of Longitudinal Data With Informative Observation Times.

Semi-parametric Regression Analysis of Interval-censored Failure Time Data

Semi-parametric Regression Analysis of Interval-censored Failure Time Data
Author: Ling Ma
Publisher:
Total Pages:
Release: 2014
Genre: Electronic dissertations
ISBN:

Download Semi-parametric Regression Analysis of Interval-censored Failure Time Data Book in PDF, ePub and Kindle

By interval-censored data, we mean that the failure time of interest is known only to lie within an interval instead of being observed exactly. Many clinical trials and longitudinal studies may generate interval-censored data. One common example occurs in medical or health studies that entail periodic follow-ups. An important special case of interval-censored data is the so called current status data when each subject is observed only once for the status of the occurrence of the event of interest. That is, instead of observing the survival endpoint directly, we only know the observation time and whether or not the event of interest has occurred at that time. Such data may occur in many fields, for example, cross-sectional studies and tumorigenicity experiments. Sometimes we also refer current status data to as case I interval-censored data and the general case as case II interval-censored data. In the following, for simplicity, we will refer current status data and interval-censored data to case I and case II interval-censored data, respectively. The statistical analysis of both case I and case II interval-censored failure time data has recently attracted a great deal of attention and especially, many procedures have been proposed for their regression analysis under various models. However, due to the strict restrictions of existing regression analysis procedures and practical demands, new methodologies for regression analysis need to be developed. For regression analysis of interval-censored data, many approaches have been proposed and for most of them, the inference is carried out based on the asymptotic normality. It's well known that the symmetric property implied by the normal distribution may not be appropriate sometimes and could underestimate the variance of estimated parameters. In the first part of this dissertation, we adopt the linear transformation models for regression analysis of interval-censored data and propose an empirical likelihood-based procedure to address the underestimating problem from using symmetric property implied by the normal distribution of the parameter estimates. Simulation and analysis of a real data set are conducted to assess the performance of the procedure. The second part of this dissertation discusses regression analysis of current status data under additive hazards models. In this part, we focus on the situation when some covariates could be missing or cannot be measured exactly due to various reasons. Furthermore, for missing covariates, there may exist some related information such as auxiliary covariates (Zhou and Pepe, 1995). We propose an estimated partial likelihood approach for estimation of regression parameters that make use of the available auxiliary information. To assess the finite sample performance of the proposed method, an extensive simulation study is conducted and indicates that the method works well in practical situations. Several semi-parametric and non-parametric methods have been proposed for the analysis of current status data. However, most of these methods deal only with the situation where observation time is independent of the underlying survival time completely or given covariates. The third part of this dissertation discusses regression analysis of current status data when the observation time may be related to survival time. The correlation between observation time and survival time and the covariate effects are described by a copula model and the proportional hazards model, respectively. For estimation, a sieve maximum likelihood procedure with the use of monotone I-spline functions is proposed and the proposed method is examined through a simulation study and illustrated with a real data set. In the fourth part of this dissertation, we discuss the regression analysis of interval- censored data where the censoring mechanism could be related to the failure time. We consider a situation where the failure time depend on the censoring mechanism only through the length of the observed interval. The copula model and monotone I-splines are used and the asymptotic properties of the resulting estimates are established. In particular, the estimated regression parameters are shown to be semiparametrically efficient. An extensive simulation study and an illustrative example is provided. Finally, we will talk about the directions for future research. One topic related the fourth part of this dissertation for future research could be to allow the failure time to depend on both the lower and upper bounds of the observation interval. Another possible future research topic could be to consider a cure rate model for interval-censored data with informative censoring.


Longitudinal Data Analysis

Longitudinal Data Analysis
Author: Garrett Fitzmaurice
Publisher: CRC Press
Total Pages: 633
Release: 2008-08-11
Genre: Mathematics
ISBN: 142001157X

Download Longitudinal Data Analysis Book in PDF, ePub and Kindle

Although many books currently available describe statistical models and methods for analyzing longitudinal data, they do not highlight connections between various research threads in the statistical literature. Responding to this void, Longitudinal Data Analysis provides a clear, comprehensive, and unified overview of state-of-the-art theory


Joint Modeling of Longitudinal and Time-to-Event Data

Joint Modeling of Longitudinal and Time-to-Event Data
Author: Robert Elashoff
Publisher: CRC Press
Total Pages: 254
Release: 2016-10-04
Genre: Mathematics
ISBN: 1315357186

Download Joint Modeling of Longitudinal and Time-to-Event Data Book in PDF, ePub and Kindle

Longitudinal studies often incur several problems that challenge standard statistical methods for data analysis. These problems include non-ignorable missing data in longitudinal measurements of one or more response variables, informative observation times of longitudinal data, and survival analysis with intermittently measured time-dependent covariates that are subject to measurement error and/or substantial biological variation. Joint modeling of longitudinal and time-to-event data has emerged as a novel approach to handle these issues. Joint Modeling of Longitudinal and Time-to-Event Data provides a systematic introduction and review of state-of-the-art statistical methodology in this active research field. The methods are illustrated by real data examples from a wide range of clinical research topics. A collection of data sets and software for practical implementation of the joint modeling methodologies are available through the book website. This book serves as a reference book for scientific investigators who need to analyze longitudinal and/or survival data, as well as researchers developing methodology in this field. It may also be used as a textbook for a graduate level course in biostatistics or statistics.


Analysis of Longitudinal Data

Analysis of Longitudinal Data
Author: Peter Diggle
Publisher: Oxford University Press, USA
Total Pages: 397
Release: 2013-03-14
Genre: Language Arts & Disciplines
ISBN: 0199676755

Download Analysis of Longitudinal Data Book in PDF, ePub and Kindle

This second edition has been completely revised and expanded to become the most up-to-date and thorough professional reference text in this fast-moving area of biostatistics. It contains an additional two chapters on fully parametric models for discrete repeated measures data and statistical models for time-dependent predictors.


Statistical Analysis of Panel Count Data

Statistical Analysis of Panel Count Data
Author: Jianguo Sun
Publisher: Springer Science & Business Media
Total Pages: 283
Release: 2013-10-09
Genre: Medical
ISBN: 1461487153

Download Statistical Analysis of Panel Count Data Book in PDF, ePub and Kindle

Panel count data occur in studies that concern recurrent events, or event history studies, when study subjects are observed only at discrete time points. By recurrent events, we mean the event that can occur or happen multiple times or repeatedly. Examples of recurrent events include disease infections, hospitalizations in medical studies, warranty claims of automobiles or system break-downs in reliability studies. In fact, many other fields yield event history data too such as demographic studies, economic studies and social sciences. For the cases where the study subjects are observed continuously, the resulting data are usually referred to as recurrent event data. This book collects and unifies statistical models and methods that have been developed for analyzing panel count data. It provides the first comprehensive coverage of the topic. The main focus is on methodology, but for the benefit of the reader, the applications of the methods to real data are also discussed along with numerical calculations. There exists a great deal of literature on the analysis of recurrent event data. This book fills the void in the literature on the analysis of panel count data. This book provides an up-to-date reference for scientists who are conducting research on the analysis of panel count data. It will also be instructional for those who need to analyze panel count data to answer substantive research questions. In addition, it can be used as a text for a graduate course in statistics or biostatistics that assumes a basic knowledge of probability and statistics.


Regression Analysis of Interval-censored Failure Time Data with Non Proportional Hazards Models

Regression Analysis of Interval-censored Failure Time Data with Non Proportional Hazards Models
Author: Han Zhang (Graduate of University of Missouri)
Publisher:
Total Pages: 135
Release: 2018
Genre:
ISBN:

Download Regression Analysis of Interval-censored Failure Time Data with Non Proportional Hazards Models Book in PDF, ePub and Kindle

Interval-censored failure time data arises when the failure time of interest is known only to lie within an interval or window instead of being observed exactly. Many clinical trials and longitudinal studies may generate interval-censored data. One common area that often produces such data is medical or health studies with periodic follow-ups, in which the medical condition of interest such as the onset of a disease is only known to occur between two adjacent examination times. An important special case of interval-censored data is the so-called current status data when each study subject is observed only once for the status of the event of interest. That is, instead of observing the survival endpoint directly, we will only know the observation time and whether or not the event of interest has occurred by that time. Such data may occur in many fields as cross-sectional studies and tumorigenicity experiments. Sometimes we also refer current status data as case I interval-censored data and the general case as case II interval-censored data. Recently the semi-parametric statistical analysis of both case I and case II intervalcensored failure time data has attracted a great deal of attention. Many procedures have been proposed for their regression analysis under various models. We will describe the structure of interval-censored data in Chapter 1 and provides two specific examples. Also some special situations like informative censoring and failure time data with missing covariates are discussed. Besides, a brief review of the literature on some important topics, including nonparametric estimation and regression analysis are performed. However, there are still a number of problems that remain unsolved or lack approaches that are simpler, more efficient and could apply to more general situations compared to the existing ones. For regression analysis of interval-censored data, many approaches have been proposed and more specifically most of them are developed for the widely used proportional hazards model. The research in this dissertation focuses on the statistical analysis on non-proportional hazards models. In Chapter 2 we will discuss the regression analysis of interval-censored failure time data with possibly crossing hazards. For the problem of crossing hazards, people assume that the hazard functions with two samples considered may cross each other where most of the existing approaches cannot deal with such situation. Many authors has provided some efficient methods on right-censored failure time data, but little articles could be found on interval-censored data. By applying the short-term and long-term hazard ratio model, we develop a spline-based maximum likelihood estimation procedure to deal with this specific situation. In the method, a splined-based sieve estimation are used to approximate the underlying unknown function. The proposed estimators are shown to be strongly consistent and the asymptotic normality of the estimators of regression parameters are also shown to be true. In addition, we also provided a Cramer-Raw type of criterion to do the model validation. Simulation study was conducted for the assessment of the finite sample properties of the presented procedure and suggests that the method seems to work well for practical situations. Also an illustrative example using a data set from a tumor study is provided. As we discussed in Chapter 1, several semi-parametric and non-parametric methods have been proposed for the analysis of current status data. However, most of them only deal with the situation where observation time is independent of the underlying survival time. In Chapter 3, we consider regression analysis of current status data with informative observation times in additive hazards model. In many studies, the observation time may be correlated to the underlying failure time of interest, which is often referred to as informative censoring. Several authors have discussed the problem and in particular, an estimating equation-based approach for fitting current status data to additive hazards model has been proposed previously when informative censoring occurs. However, it is well known that such procedure may not be efficient and to address this, we propose a sieve maximum likelihood procedure. In particular, an EM algorithm is developed and the resulting estimators of regression parameters are shown to be consistent and asymptotically normal. An extensive simulation study was conducted for the assessment of the finite sample properties of the presented procedure and suggests that it seems to work well for practical situations. An application to a tumorigenicity experiment is also provided. In Chapter 4, we considered another special case under the additive hazards model, case II interval-censored data with possibly missing covariates. In many areas like demographical, epidemiological, medical and sociological studies, a number of nonparametric or semi-parametric methods have been developed for interval-censored data when the covariates are complete. However, it is well-known that in reality some covariates may suffer missingness due to various reasons, data with missing covariates could be very common in these areas. In the case of missing covariates, a naive method is clearly the complete-case analysis, which deletes the cases or subjects with missing covariates. However, it's apparent that such analysis could result in loss of efficiency and furthermore may lead to biased estimation. To address this, we propose the inverse probability weighted method and reweighting approach to estimate the regression parameters under the additive hazards model when some of the covariates are missing at random. The resulting estimators of regression parameters are shown to be consistent and asymptotically normal. Several numerical results suggest that the proposed method works well in practical situations. Also an application to a health survey is provided. Several directions for future research are discussed in Chapter 5.


Semiparametric Methods for Regression Analysis of Panel Count Data and Mixed Panel Count Data

Semiparametric Methods for Regression Analysis of Panel Count Data and Mixed Panel Count Data
Author: Guanglei Yu
Publisher:
Total Pages: 108
Release: 2017
Genre:
ISBN:

Download Semiparametric Methods for Regression Analysis of Panel Count Data and Mixed Panel Count Data Book in PDF, ePub and Kindle

Recurrent event data and panel count data are two common types of data that have been studied extensively in event history studies in literature. By recurrent event data, we mean that subjects are observed continuously in the follow-up study and thus occurrence times of recurrent events of interest are available. For panel count data, subjects are monitored periodically at discrete observation times and thus only numbers of recurrent events between two subsequent observations are recorded. In addition, one may face mixed panel count data in practice, which are the mixture of recurrent event data and panel count data. They arise when each study subject may be observed continuously during the whole study period, continuously over some study periods and at some time points otherwise, or only at some discrete time points. That is, these mixed data provide complete or incomplete information on the recurrent event process over different time periods for different subjects. It is well-known that in panel count data, the observation process may carry information on the underlying recurrent event process and the censoring may also be dependent in practice. Under such circumstance, the first part of this dissertation will discuss regression analysis of panel count data with informative observations and drop-outs. For the problem, a general means model is presented that can allow both additive and multiplicative effects of covariates on the underlying recurrent event process. In addition, the proportional rates model and the accelerated failure time model are employed to describe the covariate effects on the observation process and the dropout or follow-up process, respectively. For estimation of regression parameters, some estimating equation-based procedures are developed and the asymptotic properties of the proposed estimators are established. In addition, a resampling approach is proposed for the estimation of the covariance matrix of the proposed estimator and a model checking procedure is also provided. The results from an extensive simulation study indicate that the proposed methodology works well for practical situations and it is applied to a motivated set of real data from the Childhood Cancer Survivor Study (CCSS) given in Section 1.1.2.2. In the second part of this dissertation, we will consider regression analysis of mixed panel count data. One major problem in the statistical inference on the mixed data is to combine these two different types of data structures. Since panel count data can be viewed as interval-censored recurrent event data with exact occurrence times of events of interest unobserved or missing, they may be augmented by filling in those missing data by imputation. Then the mixed data can be converted to recurrent event data on which the existing statistical inference method can be easily implemented. Motivated by this, a multiple imputation-based estimation approach is proposed. A simulation study is conducted to study the finite-sample properties of the proposed methodology and it shows that the proposed method is more efficient than the existing method. Also, an illustrative example from the CCSS is provided. The third part of this dissertation still considers regression analysis of mixed panel count data but in the presence of a dependent terminal event, which precludes further occurrence of either recurrent events of interest or observations. For this problem, we present a marginal modeling approach which acknowledges the fact that there will be no more recurrent events after the terminal event and leaves the correlation structure unspecified. To estimate the parameters of interest, an estimating equation-based procedure is developed and the inverse probability of survival weighting technique is used. Asymptotic properties of proposed estimators are also established and finite-sample properties are assessed in a simulation study. We again apply this proposed methodology to the CCSS. In the last part of this dissertation, we will discuss some work directions of the future research.