Scientific Computation PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Scientific Computation PDF full book. Access full book title Scientific Computation.

An Introduction to High-performance Scientific Computing

An Introduction to High-performance Scientific Computing
Author: Lloyd Dudley Fosdick
Publisher: MIT Press
Total Pages: 838
Release: 1996
Genre: Computers
ISBN: 9780262061810

Download An Introduction to High-performance Scientific Computing Book in PDF, ePub and Kindle

Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. This text evolved from a new curriculum in scientific computing that was developed to teach undergraduate science and engineering majors how to use high-performance computing systems (supercomputers) in scientific and engineering applications. Designed for undergraduates, An Introduction to High-Performance Scientific Computing assumes a basic knowledge of numerical computation and proficiency in Fortran or C programming and can be used in any science, computer science, applied mathematics, or engineering department or by practicing scientists and engineers, especially those associated with one of the national laboratories or supercomputer centers. The authors begin with a survey of scientific computing and then provide a review of background (numerical analysis, IEEE arithmetic, Unix, Fortran) and tools (elements of MATLAB, IDL, AVS). Next, full coverage is given to scientific visualization and to the architectures (scientific workstations and vector and parallel supercomputers) and performance evaluation needed to solve large-scale problems. The concluding section on applications includes three problems (molecular dynamics, advection, and computerized tomography) that illustrate the challenge of solving problems on a variety of computer architectures as well as the suitability of a particular architecture to solving a particular problem. Finally, since this can only be a hands-on course with extensive programming and experimentation with a variety of architectures and programming paradigms, the authors have provided a laboratory manual and supporting software via anonymous ftp. Scientific and Engineering Computation series


Scientific Programming and Computer Architecture

Scientific Programming and Computer Architecture
Author: Divakar Viswanath
Publisher: MIT Press
Total Pages: 625
Release: 2017-07-28
Genre: Computers
ISBN: 0262036290

Download Scientific Programming and Computer Architecture Book in PDF, ePub and Kindle

A variety of programming models relevant to scientists explained, with an emphasis on how programming constructs map to parts of the computer. What makes computer programs fast or slow? To answer this question, we have to get behind the abstractions of programming languages and look at how a computer really works. This book examines and explains a variety of scientific programming models (programming models relevant to scientists) with an emphasis on how programming constructs map to different parts of the computer's architecture. Two themes emerge: program speed and program modularity. Throughout this book, the premise is to "get under the hood," and the discussion is tied to specific programs. The book digs into linkers, compilers, operating systems, and computer architecture to understand how the different parts of the computer interact with programs. It begins with a review of C/C++ and explanations of how libraries, linkers, and Makefiles work. Programming models covered include Pthreads, OpenMP, MPI, TCP/IP, and CUDA.The emphasis on how computers work leads the reader into computer architecture and occasionally into the operating system kernel. The operating system studied is Linux, the preferred platform for scientific computing. Linux is also open source, which allows users to peer into its inner workings. A brief appendix provides a useful table of machines used to time programs. The book's website (https://github.com/divakarvi/bk-spca) has all the programs described in the book as well as a link to the html text.


Scientific Computing

Scientific Computing
Author: Michael T. Heath
Publisher: SIAM
Total Pages: 567
Release: 2018-11-14
Genre: Science
ISBN: 1611975573

Download Scientific Computing Book in PDF, ePub and Kindle

This book differs from traditional numerical analysis texts in that it focuses on the motivation and ideas behind the algorithms presented rather than on detailed analyses of them. It presents a broad overview of methods and software for solving mathematical problems arising in computational modeling and data analysis, including proper problem formulation, selection of effective solution algorithms, and interpretation of results.? In the 20 years since its original publication, the modern, fundamental perspective of this book has aged well, and it continues to be used in the classroom. This Classics edition has been updated to include pointers to Python software and the Chebfun package, expansions on barycentric formulation for Lagrange polynomial interpretation and stochastic methods, and the availability of about 100 interactive educational modules that dynamically illustrate the concepts and algorithms in the book. Scientific Computing: An Introductory Survey, Second Edition is intended as both a textbook and a reference for computationally oriented disciplines that need to solve mathematical problems.


Scientific Computation

Scientific Computation
Author: Gaston H. Gonnet
Publisher: Cambridge University Press
Total Pages: 251
Release: 2009-11-05
Genre: Business & Economics
ISBN: 0521849896

Download Scientific Computation Book in PDF, ePub and Kindle

Using real-life applications, this graduate-level textbook introduces different mathematical methods of scientific computation to solve minimization problems using examples ranging from locating an aircraft, finding the best time to replace a computer, analyzing developments on the stock market, and constructing phylogenetic trees. The textbook focuses on several methods, including nonlinear least squares with confidence analysis, singular value decomposition, best basis, dynamic programming, linear programming, and various optimization procedures. Each chapter solves several realistic problems, introducing the modeling optimization techniques and simulation as required. This allows readers to see how the methods are put to use, making it easier to grasp the basic ideas. There are also worked examples, practical notes, and background materials to help the reader understand the topics covered. Interactive exercises are available at www.cambridge.org/9780521849890.


Data-Driven Modeling & Scientific Computation

Data-Driven Modeling & Scientific Computation
Author: Jose Nathan Kutz
Publisher:
Total Pages: 657
Release: 2013-08-08
Genre: Computers
ISBN: 0199660336

Download Data-Driven Modeling & Scientific Computation Book in PDF, ePub and Kindle

Combining scientific computing methods and algorithms with modern data analysis techniques, including basic applications of compressive sensing and machine learning, this book develops techniques that allow for the integration of the dynamics of complex systems and big data. MATLAB is used throughout for mathematical solution strategies.


An Introduction to Scientific Computing

An Introduction to Scientific Computing
Author: Ionut Danaila
Publisher: Springer Science & Business Media
Total Pages: 303
Release: 2007-12-03
Genre: Mathematics
ISBN: 0387491597

Download An Introduction to Scientific Computing Book in PDF, ePub and Kindle

This book demonstrates scientific computing by presenting twelve computational projects in several disciplines including Fluid Mechanics, Thermal Science, Computer Aided Design, Signal Processing and more. Each follows typical steps of scientific computing, from physical and mathematical description, to numerical formulation and programming and critical discussion of results. The text teaches practical methods not usually available in basic textbooks: numerical checking of accuracy, choice of boundary conditions, effective solving of linear systems, comparison to exact solutions and more. The final section of each project contains the solutions to proposed exercises and guides the reader in using the MATLAB scripts available online.


Scientific Computing with Ordinary Differential Equations

Scientific Computing with Ordinary Differential Equations
Author: Peter Deuflhard
Publisher: Springer Science & Business Media
Total Pages: 498
Release: 2012-12-06
Genre: Mathematics
ISBN: 0387215824

Download Scientific Computing with Ordinary Differential Equations Book in PDF, ePub and Kindle

Well-known authors; Includes topics and results that have previously not been covered in a book; Uses many interesting examples from science and engineering; Contains numerous homework exercises; Scientific computing is a hot and topical area


Introduction to the Tools of Scientific Computing

Introduction to the Tools of Scientific Computing
Author: Einar Smith
Publisher: Springer Nature
Total Pages: 344
Release: 2020-12-02
Genre: Mathematics
ISBN: 3030608085

Download Introduction to the Tools of Scientific Computing Book in PDF, ePub and Kindle

The book provides an introduction to common programming tools and methods in numerical mathematics and scientific computing. Unlike widely used standard approaches, it does not focus on any particular language but aims to explain the key underlying concepts. In general, new concepts are first introduced in the particularly user-friendly Python language and then transferred and expanded in various scientific programming environments from C / C ++, Julia and MATLAB to Maple. This includes different approaches to distributed computing. The fact that different languages are studied and compared also makes the book useful for mathematicians and practitioners trying to decide which programming language to use for which purposes.


Numerical Analysis and Scientific Computation

Numerical Analysis and Scientific Computation
Author: Jeffery J. Leader
Publisher: Addison-Wesley
Total Pages: 590
Release: 2004
Genre: Numerical analysis
ISBN: 9780321223357

Download Numerical Analysis and Scientific Computation Book in PDF, ePub and Kindle

This text is intended for a first course in Numerical Analysis taken by students majoring in mathematics, engineering, computer science, and the sciences. This text emphasizes the mathematical ideas behind the methods and the idea of mixing methods for robustness. The optional use of MATLAB is incorporated throughout the text.


Scientific Computing with Case Studies

Scientific Computing with Case Studies
Author: Dianne P. O'Leary
Publisher: SIAM
Total Pages: 376
Release: 2009-03-19
Genre: Mathematics
ISBN: 0898716667

Download Scientific Computing with Case Studies Book in PDF, ePub and Kindle

This book is a practical guide to the numerical solution of linear and nonlinear equations, differential equations, optimization problems, and eigenvalue problems. It treats standard problems and introduces important variants such as sparse systems, differential-algebraic equations, constrained optimization, Monte Carlo simulations, and parametric studies. Stability and error analysis are emphasized, and the Matlab algorithms are grounded in sound principles of software design and understanding of machine arithmetic and memory management. Nineteen case studies provide experience in mathematical modeling and algorithm design, motivated by problems in physics, engineering, epidemiology, chemistry, and biology. The topics included go well beyond the standard first-course syllabus, introducing important problems such as differential-algebraic equations and conic optimization problems, and important solution techniques such as continuation methods. The case studies cover a wide variety of fascinating applications, from modeling the spread of an epidemic to determining truss configurations.