Regulation Of Gene Expression By Small Rnas PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Regulation Of Gene Expression By Small Rnas PDF full book. Access full book title Regulation Of Gene Expression By Small Rnas.

Regulation of Gene Expression by Small RNAs

Regulation of Gene Expression by Small RNAs
Author: Rajesh K. Gaur
Publisher: CRC Press
Total Pages: 440
Release: 2009-04-27
Genre: Science
ISBN: 1420008706

Download Regulation of Gene Expression by Small RNAs Book in PDF, ePub and Kindle

New Findings Revolutionize Concepts of Gene FunctionEndogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 p


Regulation of Gene Expression by Small RNAs

Regulation of Gene Expression by Small RNAs
Author: Rajesh K. Gaur
Publisher: CRC Press
Total Pages: 440
Release: 2017-05-31
Genre:
ISBN: 9781138111738

Download Regulation of Gene Expression by Small RNAs Book in PDF, ePub and Kindle

New Findings Revolutionize Concepts of Gene Function Endogenous small RNAs have been found in various organisms, including humans, mice, flies, worms, fungi, and bacteria. Furthermore, it's been shown that microRNAs acting as cellular rheostats have the ability to modulate gene expression. In higher eukaryotes, microRNAs may regulate as much as 50 percent of gene expression. Regulation of Gene Expression by Small RNAs brings together the pioneering work of researchers who discuss their work involving a wide variety of small RNA regulatory pathways in organisms ranging from bacteria to humans. In addition to exploring the biogenesis and processing of these regulatory RNAs, they also consider the functional importance of these pathways in host organisms. Assisting current and future researchers, this unique groundbreaking work -- Provides a suite of cutting-edge resources for the study of microRNA ontology and function Includes a technology guide for those seeking to assay microRNA expression Explores the mechanisms by which microRNAs regulate gene expression in animal cells, including the regulation of gene expression by RNA-mediated transcriptional gene silencing Discusses a fast and low-cost approach for reversing genetic influences in mammals Looks at breakthroughs in the use of microRNA-based therapy for HIV and cancer This volume captures the essence of the breadth and excitement surrounding the newly discovered regulatory roles of small RNAs. The powerful new approach in the study of gene function described in this text is leading to some remarkable findings that have the potential to revolutionize our understanding of genetic function and the treatment of diseases otherwise considered intractable.


Small RNAs:

Small RNAs:
Author: Wolfgang Nellen
Publisher: Springer Science & Business Media
Total Pages: 227
Release: 2007-09-12
Genre: Science
ISBN: 3540281304

Download Small RNAs: Book in PDF, ePub and Kindle

In recent years, the discovery of functional small RNAs has brought about an unprecedented revolution within the field of molecular biology. This volume describes strategies for the discovery and validation of small RNAs. It provides a snapshot of our current understanding of the different mechanisms triggered by small RNAs and the variations encountered in different organisms.


Regulatory RNAs in Prokaryotes

Regulatory RNAs in Prokaryotes
Author: Anita Marchfelder
Publisher: Springer Science & Business Media
Total Pages: 263
Release: 2012-12-23
Genre: Science
ISBN: 3709102189

Download Regulatory RNAs in Prokaryotes Book in PDF, ePub and Kindle

This book provides a comprehensive and up-to-date collection of review articles focusing on RNA-mediated regulation in prokaryotes. The various modes of action include the direct interaction with proteins, direct sensing of metabolites or of physical parameters, and the interaction with RNAs to stimulate or prevent binding of ribosomes or to stimulate degradation. Written by leading experts in the field, the book covers small RNA functions, RNA thermometers, riboswitches, the diversity of small RNA-guided CRISPR-Cas defense systems and selected RNA chaperons in both prokaryotic domains, bacteria and archaea. Recent advances towards the computational identification of regulatory RNAs and their targets are included and particular attention is paid to small RNA in pathogenic bacteria. This volume is the only one exclusively covering regulatory RNAs in the prokaryotic domains to date, making it essential literature for anyone interested in RNA function and gene regulation and a valuable resource for teaching these concepts.


Innovative Medicine

Innovative Medicine
Author: Kazuwa Nakao
Publisher: Springer
Total Pages: 330
Release: 2015-10-13
Genre: Science
ISBN: 4431556516

Download Innovative Medicine Book in PDF, ePub and Kindle

This book is devoted to innovative medicine, comprising the proceedings of the Uehara Memorial Foundation Symposium 2014. It remains extremely rare for the findings of basic research to be developed into clinical applications, and it takes a long time for the process to be achieved. The task of advancing the development of basic research into clinical reality lies with translational science, yet the field seems to struggle to find a way to move forward. To create innovative medical technology, many steps need to be taken: development and analysis of optimal animal models of human diseases, elucidation of genomic and epidemiological data, and establishment of “proof of concept”. There is also considerable demand for progress in drug research, new surgical procedures, and new clinical devices and equipment. While the original research target may be rare diseases, it is also important to apply those findings more broadly to common diseases. The book covers a wide range of topics and is organized into three complementary parts. The first part is basic research for innovative medicine, the second is translational research for innovative medicine, and the third is new technology for innovative medicine. This book helps to understand innovative medicine and to make progress in its realization.


Molecular Biology of The Cell

Molecular Biology of The Cell
Author: Bruce Alberts
Publisher:
Total Pages: 0
Release: 2002
Genre: Cytology
ISBN: 9780815332183

Download Molecular Biology of The Cell Book in PDF, ePub and Kindle


Regulatory RNAs

Regulatory RNAs
Author: Bibekanand Mallick
Publisher: Springer Science & Business Media
Total Pages: 549
Release: 2012-02-01
Genre: Science
ISBN: 3642225179

Download Regulatory RNAs Book in PDF, ePub and Kindle

Recent progress in high-throughput technologies and genome wide transcriptome studies have lead to a significant scientific milestone of discovering non-coding RNAs (ncRNAs) which spans through a major portion of the genome. These RNAs most often act as riboregulators, and actively participate in the regulation of important cellular functions at the transcriptional and/or post-transcriptional levels rather than simply being an intermediated messenger between DNA and proteins. As the appreciation for the importance of ncRNAs continues to emerge, it is also increasingly clear that these play critical roles in gene regulatory processes during development and differentiation. Further, regulatory RNAs are useful biomarkers for diagnosis of diseases. Hence these RNA regulators are essential to the development of therapeutics. This book on “Regulatory RNAs” offers a comprehensive view on our current understanding of these regulatory RNAs viz. siRNA, miRNA, piRNA, snoRNA, long non-coding RNA, small RNA etc. It addresses both the biogenesis and mechanism of action of regulatory RNAs with a primary focus on their annotation, experimental methodologies (microarray, next-gen sequencing etc.) for their discovery, computational tools for their prediction, and above all, applications of these revolutionary regulatory molecules in understanding biological systems and diseases, including therapeutics. This comprehensive volume is intended for readers with research or teaching interests in ncRNA biology and will provide a major information resource on current research in the fast-moving fields of RNA and gene expression regulation. Cutting-edge and concise, “Regulatory RNAs: Basics, Methods and Applications” promises to support vital research in the field of regulatory RNAs, ever-continuing to grow rapidly and gain increasing importance in basic and translational biology.


Plant Small RNA

Plant Small RNA
Author: Praveen Guleria
Publisher: Academic Press
Total Pages: 638
Release: 2020-02-19
Genre: Science
ISBN: 012817336X

Download Plant Small RNA Book in PDF, ePub and Kindle

Plant Small RNA: Biogenesis, Regulation and Application describes the biosynthesis of small RNA in plant systems. With an emphasis on the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival, this books presents the basics and most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. In addition, it emphasizes the various molecular mechanisms affected by small RNA and their applications in supporting plant growth and survival. Final sections cover the most recent advancements in small RNA mediated plant genomics, metabolomics, proteomics and physiology. Presents foundational information about small RNA biology and regulation in plants Includes small RNA pathway advances Describes the application and scope of small RNA technology for agricultural stability


Discovery of Endogenous Plant Small RNAs and Their Role in Trans-species Gene Regulation

Discovery of Endogenous Plant Small RNAs and Their Role in Trans-species Gene Regulation
Author: Saima Shahid
Publisher:
Total Pages:
Release: 2017
Genre:
ISBN:

Download Discovery of Endogenous Plant Small RNAs and Their Role in Trans-species Gene Regulation Book in PDF, ePub and Kindle

Endogenous small RNAs (20 - 24 nt) engage in complex regulation of gene expression and thus shape and direct plant development, defense, stress response and the epigenome. Based on their biogenesis and functions, endogenous small RNAs can be divided into many categories and subcategories. MicroRNAs (miRNAs) represent the most well-annotated type of small RNAs that regulate gene expression via transcript cleavage or translational repression. However, MIRNAs only contribute to a minor fraction of all the expressed small RNAs in plants. Small RNA genes other than MIRNAs remain poorly annotated, which limits complete elucidation of their regulatory roles. Furthermore, inconsistent MIRNA discovery methodologies in published studies have resulted in widespread discrepancies among existing annotations. To address these issues, and to improve current understanding of small RNA gene functions, we developed robust methodologies for de novo annotation of plant small RNA genes. Our comprehensive small RNA loci discovery based on deep sequencing data and small RNA biogenesis patterns provided refinement of existing MIRNA annotations and their functions in the basal land plant Physcomitrella patens. We also identified numerous P. patens siRNA loci producing almost equal mixture of 23-24 nt small RNAs, confirming that the heterochromatic siRNA pathway is present in the bryophyte lineage. Our de novo annotation of small RNA genes in Amborella trichopoda, the basal-most lineage of flowering plants, revealed a striking predominance of lineage-specific, intronic 23-24 nt MIRNAs and hairpin RNAs that has not been reported in any plants so far. Most of these non-canonical MIRNAs lacked easily identifiable targets in the transcriptome, suggesting these may have functions other than sequence-dependent targeting. In the monocot rice, 24 nt long intronic miRNAs function in RNA dependent DNA methylation. It is possible that A. trichopoda 23-24 nt MIRNAs function in a similar way, and such non-canonical miRNA pathways may have been retained in specific lineages of flowering plants. At least 19 A. trichopoda miRNA families were broadly conserved across land plants, and most of these also had conserved targets. These findings confirmed the presence of all major small RNA gene classes in the basal lineage of flowering plants, as well as the existence of species-specific diversities in small RNA populations expressed in non-model plants. Finally, we explored the potential exchange of endogenous small RNAs between parasitic plants and their hosts. Parasitic plants intimately connect to their hosts through a specialized feeding organ called haustoria. Bidirectional exchange of thousands of mRNAs between the stem parasite C. campestris and its hosts have been previously reported. Host-induced gene silencing has also been shown in several parasitic species including Cuscuta and Triphysaria versicolor (root parasite). De novo annotation of small RNA genes from C. campestris - A. thaliana associations revealed an unprecedented abundance of 22 nt parasite miRNAs in the haustorial interface. Several of these interface-induced C. campestris miRNAs directed slicing of six host mRNAs and triggered secondary siRNA production specifically in interface. Among these targets, Botrytis Induced Kinase 1 (BIK1) encodes a receptor-like cytoplasmic kinase and functions in in plant immunity. Another target, Sieve-Element-Occlusion-Related 1 (SEOR1) encodes a protein thought to be involved in sealing phloem sieve elements after wounding. Additionally, mRNAs encoding three auxin receptors, TIR1, AFB2, and AFB3 were targeted by a C. campestris miRNA and showed a unique pattern of secondary siRNA production in parasite-host interface. Such secondary siRNA production depended on host machinery for RNA interference. Growth of C. campestris on seor1 mutant significantly increased parasite biomass accumulation compared to wild type. Furthermore, interface-induced parasite miRNA-directed cleavage of host TIR1/AFB was also detected in C. campestris -N. benthamiana. Our findings thus confirm conserved trans-species targeting by C. campestris miRNAs across the haustorial interface, and the potential roles of these miRNAs as virulence factors in plant parasitism.


Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria

Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria
Author: Frans J. de Bruijn
Publisher: John Wiley & Sons
Total Pages: 1472
Release: 2016-07-13
Genre: Science
ISBN: 1119004896

Download Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria Book in PDF, ePub and Kindle

Bacteria in various habitats are subject to continuously changing environmental conditions, such as nutrient deprivation, heat and cold stress, UV radiation, oxidative stress, dessication, acid stress, nitrosative stress, cell envelope stress, heavy metal exposure, osmotic stress, and others. In order to survive, they have to respond to these conditions by adapting their physiology through sometimes drastic changes in gene expression. In addition they may adapt by changing their morphology, forming biofilms, fruiting bodies or spores, filaments, Viable But Not Culturable (VBNC) cells or moving away from stress compounds via chemotaxis. Changes in gene expression constitute the main component of the bacterial response to stress and environmental changes, and involve a myriad of different mechanisms, including (alternative) sigma factors, bi- or tri-component regulatory systems, small non-coding RNA’s, chaperones, CHRIS-Cas systems, DNA repair, toxin-antitoxin systems, the stringent response, efflux pumps, alarmones, and modulation of the cell envelope or membranes, to name a few. Many regulatory elements are conserved in different bacteria; however there are endless variations on the theme and novel elements of gene regulation in bacteria inhabiting particular environments are constantly being discovered. Especially in (pathogenic) bacteria colonizing the human body a plethora of bacterial responses to innate stresses such as pH, reactive nitrogen and oxygen species and antibiotic stress are being described. An attempt is made to not only cover model systems but give a broad overview of the stress-responsive regulatory systems in a variety of bacteria, including medically important bacteria, where elucidation of certain aspects of these systems could lead to treatment strategies of the pathogens. Many of the regulatory systems being uncovered are specific, but there is also considerable “cross-talk” between different circuits. Stress and Environmental Regulation of Gene Expression and Adaptation in Bacteria is a comprehensive two-volume work bringing together both review and original research articles on key topics in stress and environmental control of gene expression in bacteria. Volume One contains key overview chapters, as well as content on one/two/three component regulatory systems and stress responses, sigma factors and stress responses, small non-coding RNAs and stress responses, toxin-antitoxin systems and stress responses, stringent response to stress, responses to UV irradiation, SOS and double stranded systems repair systems and stress, adaptation to both oxidative and osmotic stress, and desiccation tolerance and drought stress. Volume Two covers heat shock responses, chaperonins and stress, cold shock responses, adaptation to acid stress, nitrosative stress, and envelope stress, as well as iron homeostasis, metal resistance, quorum sensing, chemotaxis and biofilm formation, and viable but not culturable (VBNC) cells. Covering the full breadth of current stress and environmental control of gene expression studies and expanding it towards future advances in the field, these two volumes are a one-stop reference for (non) medical molecular geneticists interested in gene regulation under stress.