Rational Design Of Nanostructured Polymer Electrolytes And Solid Liquid Interphases For Lithium Batteries PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Rational Design Of Nanostructured Polymer Electrolytes And Solid Liquid Interphases For Lithium Batteries PDF full book. Access full book title Rational Design Of Nanostructured Polymer Electrolytes And Solid Liquid Interphases For Lithium Batteries.

Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries

Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries
Author: Snehashis Choudhury
Publisher: Springer Nature
Total Pages: 230
Release: 2019-09-25
Genre: Technology & Engineering
ISBN: 3030289435

Download Rational Design of Nanostructured Polymer Electrolytes and Solid–Liquid Interphases for Lithium Batteries Book in PDF, ePub and Kindle

This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.


Rational Design of Nanostructured Polymer Electrolytes and Solid-liquid Interphases for Lithium Batteries

Rational Design of Nanostructured Polymer Electrolytes and Solid-liquid Interphases for Lithium Batteries
Author: Snehashis Choudhury
Publisher:
Total Pages: 239
Release: 2019
Genre: Lithium cells
ISBN: 9783030289447

Download Rational Design of Nanostructured Polymer Electrolytes and Solid-liquid Interphases for Lithium Batteries Book in PDF, ePub and Kindle

This thesis makes significant advances in the design of electrolytes and interfaces in electrochemical cells that utilize reactive metals as anodes. Such cells are of contemporary interest because they offer substantially higher charge storage capacity than state-of-the-art lithium-ion battery technology. Batteries based on metallic anodes are currently considered impractical and unsafe because recharge of the anode causes physical and chemical instabilities that produce dendritic deposition of the metal leading to catastrophic failure via thermal runaway. This thesis utilizes a combination of chemical synthesis, physical & electrochemical analysis, and materials theory to investigate structure, ion transport properties, and electrochemical behaviors of hybrid electrolytes and interfacial phases designed to prevent such instabilities. In particular, it demonstrates that relatively low-modulus electrolytes composed of cross-linked networks of polymer-grafted nanoparticles stabilize electrodeposition of reactive metals by multiple processes, including screening electrode electrolyte interactions at electrochemical interfaces and by regulating ion transport in tortuous nanopores. This discovery is significant because it overturns a longstanding perception in the field of nanoparticle-polymer hybrid electrolytes that only solid electrolytes with mechanical modulus higher than that of the metal electrode are able to stabilize electrodeposition of reactive metals.


Nanostructures and Nanomaterials for Batteries

Nanostructures and Nanomaterials for Batteries
Author: Yu-Guo Guo
Publisher: Springer
Total Pages: 379
Release: 2019-05-17
Genre: Technology & Engineering
ISBN: 9811362335

Download Nanostructures and Nanomaterials for Batteries Book in PDF, ePub and Kindle

This book discusses the roles of nanostructures and nanomaterials in the development of battery materials for state-of-the-art electrochemical energy storage systems, and provides detailed insights into the fundamentals of why batteries need nanostructures and nanomaterials. It explores the advantages offered by nanostructure electrode materials, the challenges of using nanostructured materials in batteries, as well as the rational design of nanostructures and nanomaterials to achieve optimal battery performance. Further, it closely examines the latest advances in the application of nanostructures and nanomaterials for future rechargeable batteries, including high-energy and high-power lithium ion batteries, lithium metal batteries (Li-O2, Li-S, Li-Se, etc.), all-solid-state batteries, and other metal batteries (Na, Mg, Al, etc.). It is a valuable reference resource for readers interested in or involved in research on energy storage, energy materials, electrochemistry and nanotechnology.


Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery

Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery
Author: Xing Lu
Publisher:
Total Pages: 107
Release: 2020
Genre:
ISBN:

Download Design and Synthesis of Nanostructured Materials for Flexible Lithium-Ion Battery Book in PDF, ePub and Kindle

In recent years, continuous progress in electronic devices, especially in wearable devices, has attracted surging attention from the consumer market. Therefore, flexible energy storage was developed to fulfill the needs of new flexible devices with ultra-lightweight and small volume. The very recent products and concepts such as touch screens, roll-up displays, wearable sensors, and even implantable medical devices have shown great potential in flexible applications because of their extreme convenience. However, the development of corresponding power sources largely lags behind these emerging technologies of flexible devices. Lithium-ion batteries (LIBs), owing to high energy density and high operating voltage, have been serving as an ideal power source for flexible devices. Nevertheless, direct implementation of commercial LIBs leads to irreversible deformation of structural integrity, short-circuiting or even severe explosion hazard. Such dilemma originates from the poor flexibility of electrode and electrolyte. For electrode side, current electrode sheets used in LIBs are manufactured by holding active material particles and conductive agents by a small weight fraction of polymeric binders. Such fragile electrode structure could easily lose electrical contact under physical deformation, leading to disintegrated electrode sheets, drastic degradations of electrochemical performance, and even safety issue due to internal short-circuiting. For electrolyte side, LIBs employ nonaqueous liquid electrolyte with high ionic conductivity and excellent electrode wettability. However, the drawbacks of such electrolyte system are also evident: poor ion selectivity, flammability, and leakage issue while being deformed render unsuitability of liquid electrolyte for flexible device application. To fabricate flexible LIBs, the current state-of-the-art research employs two design strategies involving electrode structure. One popular strategy is constructing scaffolding structure using carbonaceous materials to function as supportive matrix for active materials. Given carbon nanotubes (CNTs) as an example, the CNTs possess remarkable electrical conductivity and mechanical strength (elastic modulus: 1 TPa, tensile strength: 100 GPa), which contribute to conductive and flexible electrodes as the high-aspect ratio of CNTs can serve as threading materials. Another strategy is rational architecture design of active materials that are conventionally particulate. For example, vanadium pentoxide nanowires can be readily fabricated into free-standing and binder-free electrode membrane. Nevertheless, the most of strategies above still fall short of practicality due to reduced portion of active materials and consequently compromised energy density. In comparison with the mobile liquid electrolyte, the emerging solid-state electrolytes could largely solve circumventing issues of ion selectivity, flammability and leakage. As one prevailing category, solid polymer electrolytes comprising polymers and lithium salts feature decent manufacturing flexibility. Meanwhile, their poor ionic conductivity (10 8 ~ 10 5S cm 1) could be ameliorated by gel polymer electrolytes with organic solvents (plasticizers) and/or inorganic solid fillers (e.g., SiO2). Nevertheless, the non-conductive fillers block ion-transport pathways while allow partial electrical conduction, limiting the interfacial engineering and compatibility with electrodes. In this dissertation, we tackle the aforementioned critical issues of flexible batteries in two aspects. Firstly, we design and synthesize flexible electrode from prospective of material and architecture. A novel cathode constructed by entangling networks of V2O5, CNTs and polytetrafluoroethylene (PTFE) is design and fabricated. Notably, the resulting flexible battery simultaneously achieves excellent mechanical strength (800 MPa young's module), superior cycle durability (86% retention after 1000 times bending) and intriguing capacity (300 mAh g-1 at 0.25C). Furthermore, a Zr-based metal-organic framework (MOF) possessing open-metal sites (OMSs) was used as the microporous filler to facilitate cation (Li+) conduction in GPL. Compared with the state-of-the-art research, our work significantly enhanced tLi+ of GLP from 0.39 up to 0.66 while maintained 1.5 mS cm 1 ionic conductivity. Notably, a reduced thermal activation energy (from 113 to 76 meV) was observed, suggesting diffusion energy barriers was eased by selective promotion of Li+ conduction. To conclude, flexible Li-ion batterie system research is still at early developing stage. Above work provides rational design and improvement of the current FLIBs system in rather facile and cost-effective way. The methodology we proposed are hoped to bring further innovation toward FLIBs field and be extended to numerous applications in the future.


Hard X-ray Photoelectron Spectroscopy (HAXPES)

Hard X-ray Photoelectron Spectroscopy (HAXPES)
Author: Joseph Woicik
Publisher: Springer
Total Pages: 576
Release: 2015-12-26
Genre: Science
ISBN: 3319240439

Download Hard X-ray Photoelectron Spectroscopy (HAXPES) Book in PDF, ePub and Kindle

This book provides the first complete and up-to-date summary of the state of the art in HAXPES and motivates readers to harness its powerful capabilities in their own research. The chapters are written by experts. They include historical work, modern instrumentation, theory and applications. This book spans from physics to chemistry and materials science and engineering. In consideration of the rapid development of the technique, several chapters include highlights illustrating future opportunities as well.


Nanostructured Materials for Next-Generation Energy Storage and Conversion

Nanostructured Materials for Next-Generation Energy Storage and Conversion
Author: Qiang Zhen
Publisher: Springer Nature
Total Pages: 472
Release: 2019-10-10
Genre: Technology & Engineering
ISBN: 3662586754

Download Nanostructured Materials for Next-Generation Energy Storage and Conversion Book in PDF, ePub and Kindle

Volume 3 of a 4-volume series is a concise, authoritative and an eminently readable and enjoyable experience related to lithium ion battery design, characterization and usage for portable and stationary power. Although the major focus is on lithium metal oxides or transition metal oxide as alloys, the discussion of fossil fuels is also presented where appropriate. This monograph is written by recognized experts in the field, and is both timely and appropriate as this decade will see application of lithium as an energy carrier, for example in the transportation sector. This Volume focuses on the fundamentals related to batteries using the latest research in the field of battery physics, chemistry, and electrochemistry. The research summarised in this book by leading experts is laid out in an easy-to-understand format to enable the layperson to grasp the essence of the technology, its pitfalls and current challenges in high-power Lithium battery research. After introductory remarks on policy and battery safety, a series of monographs are offered related to fundamentals of lithium batteries, including, theoretical modeling, simulation and experimental techniques used to characterize electrode materials, both at the material composition, and also at the device level. The different properties specific to each component of the batteries are discussed in order to offer tradeoffs between power and energy density, energy cycling, safety and where appropriate end-of-life disposal. Parameters affecting battery performance and cost, longevity using newer metal oxides, different electrolytes are also reviewed in the context of safety concerns and in relation to the solid-electrolyte interface. Separators, membranes, solid-state electrolytes, and electrolyte additives are also reviewed in light of safety, recycling, and high energy endurance issues. The book is intended for a wide audience, such as scientists who are new to the field, practitioners, as well as students in the STEM and STEP fields, as well as students working on batteries. The sections on safety and policy would be of great interest to engineers and technologists who want to obtain a solid grounding in the fundamentals of battery science arising from the interaction of electrochemistry, solid-state materials science, surfaces, and interfaces.


Polymer-based Solid State Batteries

Polymer-based Solid State Batteries
Author: Daniel Brandell
Publisher: Walter de Gruyter GmbH & Co KG
Total Pages: 236
Release: 2021-07-19
Genre: Technology & Engineering
ISBN: 1501514903

Download Polymer-based Solid State Batteries Book in PDF, ePub and Kindle

Recent years has seen a tremendous growth in interest for solid state batteries based on polymer electrolytes, with advantages of higher safety, energy density, and ease of processing. The book explains which polymer properties guide the performance of the solid-state device, and how these properties are best determined. It is an excellent guide for students, newcomers and experts in the area of solid polymer electrolytes.


Rational Design of Composite Cathodes and Functional Electrolytes for High-Energy Lithium-Metal Batteries

Rational Design of Composite Cathodes and Functional Electrolytes for High-Energy Lithium-Metal Batteries
Author: Panpan Dong
Publisher:
Total Pages: 188
Release: 2020
Genre: Cathodes
ISBN:

Download Rational Design of Composite Cathodes and Functional Electrolytes for High-Energy Lithium-Metal Batteries Book in PDF, ePub and Kindle

Metallic lithium has been considered one of the most attractive anode materials for high-energy batteries because it has a low density (0.53 g cm8́23), the lowest reduction potential (8́23.04 V vs. the standard hydrogen electrode), and a high theoretical specific capacity (3,860 mAh g8́21). Chalcogen elements, such as sulfur and selenium, have been widely reported as promising cathode candidates for next-generation lithium-metal batteries (LMBs) that demonstrate much higher energy density than current lithium-ion batteries. However, lithium0́3chalcogen batteries still suffer from the loss of cathode active materials and the degradation of lithium metal anode owing to the shuttle effects of intermediate products (e.g., polysulfides and polyselenides), leading to fast capacity fading and poor cyclability. Moreover, for lithium metal anodes, the cracking of solid electrolyte interphase (SEI) layer during long cycling results in dead lithium formation and lithium dendrite growth, leading to poor Coulombic efficiency and potential safety issues. The abovementioned challenges hinder the commercialization of LMBs. To address these problems, various strategies have been developed to mitigate the dissolution/diffusion of redox intermediates and stabilize metallic lithium anodes. In this dissertation, sulfur- and selenium-based nanocomposites were synthesized and employed as advanced cathode materials for high-energy LMBs. The correlations between syntheses, properties, and performances of such chalcogen cathode materials were established by various characterization methods such as microstructural analyses, solid-state nuclear magnetic resonance, X-ray photoelectron spectroscopy, and nanoscale X-ray computed tomography. Additionally, the interfacial electrochemistry of lithium metal anodes and ionic liquid0́3based electrolytes is comprehensively investigated, revealing the effective stabilization and protection of lithium anode via the formation of an in situ SEI layer with specific compositions. Moreover, strategies for achieving novel solid polymer electrolytes with improved lithium-ion transference number were demonstrated, paving the way toward safe LMBs by mitigating lithium dendrite growth. This dissertation provides a combined strategy of advanced cathode design, electrolyte engineering, and lithium anode stabilization to develop high-energy LMBs for practical applications.