Quantitative Trait Loci And Genomewide Association Mapping In Western Canadian Spring Wheat Triticum Aestivum L PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Quantitative Trait Loci And Genomewide Association Mapping In Western Canadian Spring Wheat Triticum Aestivum L PDF full book. Access full book title Quantitative Trait Loci And Genomewide Association Mapping In Western Canadian Spring Wheat Triticum Aestivum L.

Quantitative Trait Loci and Genomewide Association Mapping in Western Canadian Spring Wheat (Triticum Aestivum L.)

Quantitative Trait Loci and Genomewide Association Mapping in Western Canadian Spring Wheat (Triticum Aestivum L.)
Author: Hua Chen
Publisher:
Total Pages: 168
Release: 2016
Genre: Wheat
ISBN:

Download Quantitative Trait Loci and Genomewide Association Mapping in Western Canadian Spring Wheat (Triticum Aestivum L.) Book in PDF, ePub and Kindle

Early maturity, grain yield and grain protein content are some of the important traits in western Canadian wheat breeding programs. A series of experiments were conducted to explore the genetic basis of days to heading, and maturity, plant height, grain protein, grain yield and related traits. In a spring wheat population of 187 recombinant inbred lines genotyped with 341 Diversity Array Technology (DArT) polymorphic markers, a total of 21 quantitative trait loci (QTLs) were identified for all phenotypic traits recorded, except plant height and grain protein content. Two earliness per se QTLs were mapped on chromosomes 1A (QEps.dms-1A) and 4A (QEps.dms-4A) in all three growing seasons, contributing 15-27% and 8-10%, respectively, to the total genetic variation in days to maturity. The two earliness QTLs and Vrn-B1 exhibited additive interaction. In the same population, lines carrying the resistant allele of Lr34/Yr18 were taller, matured earlier, yielded less grain with lower test weights than lines without Lr34/Yr18. Lines with Lr34/Yr18 also exhibited lower leaf and stripe rust infection than lines with the susceptible allele. The failure to combine Lr34/Yr18 with high yield, protein, and SDS sedimentation suggested single seed descent or doubled haploid populations for the combined selection of multiple quantitatively inherited traits, and simply one molecular marker, would require population sizes in excess of at least 500 to have any possibility of selection success. Genetic diversity analysis for earliness related and plant height reducing genes in 82 spring wheat cultivars registered in western Canada through eight diagnostic DNA markers suggested breeding efforts in western Canada have resulted in the incorporation of vernalization and photoperiod insensitive and height reducing genes in modern cultivars to promote early maturity, to make use of off-season nurseries in other parts of the world and to improve lodging tolerance. Using genome-wide association mapping (GWAS). we identified a total of 152 significant marker-trait associations; however, there were only 18 genomic regions that consisted of clusters of 3 to 20 significant single nucleotide polymorphisms (SNPs) across 12 chromosomes, including two regions each for grain yield, test weight and protein content, six regions for plant height and six other coincident regions that were associated with two or three traits. The genomic region associated with plant height on chromosome 4B showed high linkage disequilibrium (r2 > 0.80) with the semi-dwarfing gene Rht-B1. Results of these studies suggest that besides the widely used semi-dwarf and early maturity related genes, there is a wide spectrum of loci available that could be used for modulating plant height, days to maturity, grain yield and grain protein content in western Canadian wheat germplasm.


Quantitative Trait Loci Mapping of Rust Resistance and Agronomic Traits in the Doubled Haploid Spring Wheat Population 'HYAYT12-10' × 'GP146'

Quantitative Trait Loci Mapping of Rust Resistance and Agronomic Traits in the Doubled Haploid Spring Wheat Population 'HYAYT12-10' × 'GP146'
Author: Izabela L. Ciechanowska
Publisher:
Total Pages: 0
Release: 2022
Genre: Wheat
ISBN:

Download Quantitative Trait Loci Mapping of Rust Resistance and Agronomic Traits in the Doubled Haploid Spring Wheat Population 'HYAYT12-10' × 'GP146' Book in PDF, ePub and Kindle

Marker-assisted selection requires the identification of molecular markers associated with major genes and quantitative trait loci (QTL) using linkage analysis. In this study, we used 167 doubled haploid (DH) lines derived from two unregistered spring wheat (Triticum aestivum L.) parental lines that belong to the Canada Western Special Purpose (CWSP) class to map QTLs associated with five traits using inclusive composite interval mapping (ICIM). Using ICIM, least square means phenotype data across 3-4 environments, and a genetic map of 2,676 SNPs out of the wheat 90K SNP array, we identified ten QTLs associated with maturity (4A and 5B), plant lodging (4B, 5A, 5D, and 7D), grain yield (2D), leaf rust (4A) and stem rust (1A and 2B). Each QTL individually accounted for 6.0-22.3% of the phenotypic variance and together accounted for 8.6-38.2% of each trait. QTLs identified for rusts using ICIM had a minor effect (6.0-9.0%) or a major effect (22.3%). Our major effect QTL at 22.3% was discovered on chromosome 2B and contributed to stem rust response. Its physical location has been associated with disease response in previous studies. Results from this study provide additional valuable information to wheat researchers, in particular that the area on chromosome 2B should be considered for future analyses.


Stripe Rust

Stripe Rust
Author: Xianming Chen
Publisher: Springer
Total Pages: 723
Release: 2017-07-11
Genre: Science
ISBN: 9402411119

Download Stripe Rust Book in PDF, ePub and Kindle

This book comprehensively introduces stripe rust disease, its development and its integral control. Covering the biology, genetics, genome, and functional genomics of the pathogen, it also discusses host and non-host resistance, their interactions and the epidemiology of the disease. It is intended for scientists, postgraduates and undergraduate studying stripe rust, plant pathology, crop breeding, crop protection and agricultural science, but is also a valuable reference book for consultants and administrators in agricultural businesses and education.


Quantitative Trait Locus Mapping of Agronomic, Physiological, and End-use Quality Traits of Common Wheat (T. Aestivum)

Quantitative Trait Locus Mapping of Agronomic, Physiological, and End-use Quality Traits of Common Wheat (T. Aestivum)
Author: Junli Zhang (Doctoral student)
Publisher:
Total Pages: 416
Release: 2013
Genre: Dissertations, Academic
ISBN:

Download Quantitative Trait Locus Mapping of Agronomic, Physiological, and End-use Quality Traits of Common Wheat (T. Aestivum) Book in PDF, ePub and Kindle

Grain yield (GY) is always the first priority in wheat (Triticum aestivum L.) breeding; however, progress in improvement of this trait is hampered due to quantitative inheritance, low heritability, and confounding environmental effects. Thanks to the advancements of high throughput genotyping and phenotyping technologies, both molecular markers and physiological traits are now promising indirect selection tools in breeding for this trait and other traits. Besides grain yield, grain quality is another important respect in wheat breeding, and one of the quality traits is the Hagberg falling number (FN), which is commonly used in grain grading. The FN test has a genetic component but is also strongly influenced by environmental conditions during the reproductive growth stage, including excessive moisture, extreme temperature, and biotic and abiotic stresses. The objective of the current studies was to identify potential genomic regions and molecular markers that influence GY, three important physiological traits (canopy temperature, CT; chlorophyll content index, CCI; flag leaf senescence, FLS) that could impact grain yield during heat and moisture stress, and FN by QTL mapping approaches. A winter wheat population of 159 recombinant inbred lines (RILs) from the cross of ID0444 and Rio Blanco were used to map QTL for GY, CT, CCI and FLS, and a total of 110 hard white spring (HWS) wheat accessions from the National Small Grain Collection (NSGC) were used in genome-wide association mapping of FN. GY was evaluated under three field conditions, rainfed, terminal drought (water stress applied after anthesis), and fully irrigated, with a total of six location-year environments. QTL mapping was conducted for main effect (G) of GY, and the genotype x environment interaction (GEI) effect of GY. A total of 17 QTL were associated with G and 13 QTL associated with GEI, and nine of 13 QTL for GEI were mapped in the flanking chromosomal regions of QTL for GEI. One QTL, Q.Gy.ui-1B.2 found on chromosome 1B, was associated with GY in all six individual environments. Significant QTL x environment interaction (QEI), QTL x QTL interaction (QQI) and QTL x QTL x environment (QQEI) were also identified. The present study showed that the QEI and QQI were as important as the QTL main effect of GY, and they should be taken into consideration in future QTL studies and marker-assisted selection (MAS). The three physiological traits, CT, CCI and FLS, which have been reported to be closely related to grain yield of wheat in diverse environments, were evaluated in two terminal drought and one rainfed environments in southeastern Idaho. Correlation results showed that CT and FLS were highly correlated with GY but the relationship between CCI and GY varied among the three environments. FLS was closely related to heading date (HD) and its effect on grain yield might be determined by HD in the RIL population used in the study. Stepwise multiple regression showed that CT and FLS could predict grain yield effectively and could be used as indirect selection criteria in wheat breeding. A total of 27 main effect QTL (M-QTL) were identified on 12 chromosomes, explaining 5 to 14% of phenotypic variation. Seven epistatic QTL (E-QTL) were identified for FLS and CCI and these could explain 9-25% of the phenotypic variation, but most of them did not have a main effect. Most of the QTL were reported for the first time. FN tests were conducted using grain flour samples from the 110 HWS wheat accessions grown in five environments. A total of 1,740 SNP markers were used to detect SNP-FN associations using both general linear model (GLM) and mixed linear model (MLM). A total of 13 QTL located in nine chromosomal regions were identified in both GLM and MLM approaches. These new QTL have the potential to increase the selection efficiency for wheat breeding, and can be further explored to identify candidate genes.


Genetic Studies for Improved Agronomic Performance Under Abiotic and Biotic Stresses in Spring Wheat (Triticum Aestivum L.)

Genetic Studies for Improved Agronomic Performance Under Abiotic and Biotic Stresses in Spring Wheat (Triticum Aestivum L.)
Author: Jayfred Gaham Villegas Godoy
Publisher:
Total Pages: 229
Release: 2016
Genre:
ISBN:

Download Genetic Studies for Improved Agronomic Performance Under Abiotic and Biotic Stresses in Spring Wheat (Triticum Aestivum L.) Book in PDF, ePub and Kindle

Wheat (Triticum aestivum L.) is the main source of food for roughly one-third of the world's population. In order to satisfy demand, wheat is planted over millions of acres and exposed to various abiotic and biotic stresses such as heat stress and stripe rust (Puccinia striiformis). Development of cultivars with improved agronomic performance and stable yields is necessary to prevent yield losses and possibly food shortage. A quantitative trait loci (QTL) mapping study was performed using a recombinant inbred population derived from a cross between elite spring wheat varieties 'Kelse' and 'Scarlet' to identify QTL associated with heat tolerance under natural and controlled conditions. Our analysis yielded 19 QTL linked to 14 traits related to heat tolerance. A pleiotropic region for yield components was detected on chromosome 4AL which can be a valuable resource of favorable alleles for heat tolerance. Genome-wide association analysis was conducted on a population of elite North American germplasm to detect significant marker-traits associations (MTAs) for resistance to stripe rust infection and improved grain yield and yield component traits. Eleven highly significant (FDR


Phenotypes and Genotypes

Phenotypes and Genotypes
Author: Florian Frommlet
Publisher: Springer
Total Pages: 232
Release: 2016-02-12
Genre: Computers
ISBN: 1447153103

Download Phenotypes and Genotypes Book in PDF, ePub and Kindle

This timely text presents a comprehensive guide to genetic association, a new and rapidly expanding field that aims to elucidate how our genetic code (genotypes) influences the traits we possess (phenotypes). The book provides a detailed review of methods of gene mapping used in association with experimental crosses, as well as genome-wide association studies. Emphasis is placed on model selection procedures for analyzing data from large-scale genome scans based on specifically designed modifications of the Bayesian information criterion. Features: presents a thorough introduction to the theoretical background to studies of genetic association (both genetic and statistical); reviews the latest advances in the field; illustrates the properties of methods for mapping quantitative trait loci using computer simulations and the analysis of real data; discusses open challenges; includes an extensive statistical appendix as a reference for those who are not totally familiar with the fundamentals of statistics.


Genetic Analysis of End-use Quality Traits in Soft White Wheat (Triticum Aestivum L.)

Genetic Analysis of End-use Quality Traits in Soft White Wheat (Triticum Aestivum L.)
Author: Kendra Lyn Gregory Jernigan
Publisher:
Total Pages: 158
Release: 2015
Genre:
ISBN:

Download Genetic Analysis of End-use Quality Traits in Soft White Wheat (Triticum Aestivum L.) Book in PDF, ePub and Kindle

Wheat (Triticum aestivum L.) is used in diverse baked products that require specific end use quality traits. Kernel texture, flour water absorption capacity, gluten strength, starch composition, and other flour constituents all influence overall flour functionality and dough rheology, specifying both wheat market class and intended end product. Wheat breeders need to develop cultivars with superior end-use quality traits, while also optimizing important agronomic traits. Our first objective was to use a genetic linkage map and 207 recombinant inbred lines (RIL) from a soft white 'Coda' by 'Brundage' cross to identify quantitative trait loci (QTL) for grain, milling, and baking traits. The linkage map was developed using 570 single nucleotide polymorphisms (SNP) and 136 simple sequence repeat markers. The RILs were grown in five locations in Idaho and Washington from 2006 to 2013. We detected three QTL on chromosomes 2D, 4B, and 6B that were consistently associated with multiple end-use quality traits. Our second objective was to use a genetic linkage map and 131 RILs from a soft white 'Louise' by 'Alpowa' cross to identify QTL associated with arabinoxylan content and milling traits. The linkage map consisted of 924 SNPs and 41 linkage groups. This population was grown in three Washington locations from 2011 to 2012. We detected 28 QTL associated with seven arabinoxylan content and milling traits. Our third objective was to use 480 advanced breeding lines and Pacific Northwest cultivars to identify molecular markers associated with 21 end-use quality traits. Genotypic data from the iSelect 90K SNP chip was combined with best linear unbiased predictions of historic phenotypic data from the USDA-ARS Western Wheat Quality Laboratory. Genome-wide association mapping in the R package, genome association and prediction integrated tool (GAPIT), detected significant markers for multiple end-use quality traits on chromosomes1B, 1D, 2D, 5A, 5B, and 7A. An improved understanding of the genetic architecture underlying end-use quality traits in wheat may assist breeders with cultivar development for superior end-use quality, particularly by increasing frequencies of favorable alleles in breeding populations. Cultivars with superior end-use quality will allow US wheat producers to maintain domestic and international markets.


Quantitative Trait Loci Mapping of Yield, Its Related Traits, and Spike Morphology Factors in Winter Wheat (Triticum Aestivum L. )

Quantitative Trait Loci Mapping of Yield, Its Related Traits, and Spike Morphology Factors in Winter Wheat (Triticum Aestivum L. )
Author: Robert Christopher Gaynor
Publisher:
Total Pages: 170
Release: 2011
Genre: Factor analysis
ISBN:

Download Quantitative Trait Loci Mapping of Yield, Its Related Traits, and Spike Morphology Factors in Winter Wheat (Triticum Aestivum L. ) Book in PDF, ePub and Kindle

Increasing grain yield in wheat (Triticum aestivum L.) is a challenging task, because yield is a complex trait controlled by many genes and highly influenced by environmental factors. The genetic control of yield components and other traits associated with yield may be less complex and thus more manageable for breeding. This study seeks to identify quantitative trait loci (QTLs) for these traits. Two new genetic linkage maps were constructed from recombinant inbred lines (RILs) derived from crosses between the Oregon soft white winter wheat variety Tubbs and a Western European hard red winter wheat variety, Einstein. A third linkage map was constructed from RILs from a cross with Tubbs and a Western European experimental hard red winter wheat line. A combination of Diversity Arrays Technology (DArT), Simple Sequence Repeat (SSR), orw5, and B1 markers were used to construct genetic linkage maps. Two replications of the RIL populations were grown in yield trial sized plots at Corvallis, OR and Pendleton, OR in 2009. The RILs were evaluated for grain yield, spikes per m2, fertile spikelets per spike, sterile spikelets per spike, seeds per spike, seeds per fertile spikelet, average seed weight, growing degree days (GDD) to flowering, GDD to physiological maturity, GDD of grain fill, plant height, test weight, and percent grain protein. Composite interval mapping (CIM) detected 146 QTLs for these traits spread across all chromosomes except for 6D. Thirty six percent of all of the QTLs detected were in close proximity to four loci: Rht-B1, Rht-D1, B1, and Xgwm372. The use of factor analysis to aid in QTL mapping for correlated traits related to spike morphology was explored. Quantitative trait loci mapping of factor scores for these traits potentially showed an increase in statistical power to detect QTLs and a decrease in the probability of type I error over mapping the traits individually.


Quantitative Trait Loci

Quantitative Trait Loci
Author: Nicola J. Camp
Publisher: Springer Science & Business Media
Total Pages: 362
Release: 2008-02-03
Genre: Medical
ISBN: 1592591760

Download Quantitative Trait Loci Book in PDF, ePub and Kindle

In Quantitative Trait Loci: Methods and Protocols, a panel of highly experienced statistical geneticists demonstrate in a step-by-step fashion how to successfully analyze quantitative trait data using a variety of methods and software for the detection and fine mapping of quantitative trait loci (QTL). Writing for the nonmathematician, these experts guide the investigator from the design stage of a project onwards, providing detailed explanations of how best to proceed with each specific analysis, to find and use appropriate software, and to interpret results. Worked examples, citations to key papers, and variations in method ease the way to understanding and successful studies. Among the cutting-edge techniques presented are QTDT methods, variance components methods, and the Markov Chain Monte Carlo method for joint linkage and segregation analysis.