Programming Projects In C For Students Of Engineering Science And Mathematics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Programming Projects In C For Students Of Engineering Science And Mathematics PDF full book. Access full book title Programming Projects In C For Students Of Engineering Science And Mathematics.

Programming Projects in C for Students of Engineering, Science, and Mathematics

Programming Projects in C for Students of Engineering, Science, and Mathematics
Author: Rouben Rostamian
Publisher: SIAM
Total Pages: 390
Release: 2014-09-03
Genre: Science
ISBN: 1611973503

Download Programming Projects in C for Students of Engineering, Science, and Mathematics Book in PDF, ePub and Kindle

Like a pianist who practices from a book of études, readers of Programming Projects in C for Students of Engineering, Science, and Mathematics will learn by doing. Written as a tutorial on how to think about, organize, and implement programs in scientific computing, this book achieves its goal through an eclectic and wide-ranging collection of projects. Each project presents a problem and an algorithm for solving it. The reader is guided through implementing the algorithm in C and compiling and testing the results. It is not necessary to carry out the projects in sequential order. The projects contain suggested algorithms and partially completed programs for implementing them to enable the reader to exercise and develop skills in scientific computing; require only a working knowledge of undergraduate multivariable calculus, differential equations, and linear algebra; and are written in platform-independent standard C; the Unix command-line is used to illustrate compilation and execution.


A Ramble Through Probability

A Ramble Through Probability
Author: Samopriya Basu
Publisher: SIAM
Total Pages: 620
Release: 2024-03-06
Genre: Mathematics
ISBN: 1611977827

Download A Ramble Through Probability Book in PDF, ePub and Kindle

Measure theory and measure-theoretic probability are fascinating subjects. Proofs describing profound ways to reason lead to results that are frequently startling, beautiful, and useful. Measure theory and probability also play roles in the development of pure and applied mathematics, statistics, engineering, physics, and finance. Indeed, it is difficult to overstate their importance in the quantitative disciplines. This book traces an eclectic path through the fundamentals of the topic to make the material accessible to a broad range of students. A Ramble through Probability: How I Learned to Stop Worrying and Love Measure Theory brings together the key elements and applications in a unified presentation aimed at developing intuition; contains an extensive collection of examples that illustrate, explain, and apply the theories; and is supplemented with videos containing commentary and explanations of select proofs on an ancillary website. This book is intended for graduate students in engineering, mathematics, science, and statistics. Researchers who need to use probability theory will also find it useful. It is appropriate for graduate-level courses on measure theory and/or probability theory.


A First Course in Numerical Methods

A First Course in Numerical Methods
Author: Uri M. Ascher
Publisher: SIAM
Total Pages: 574
Release: 2011-07-14
Genre: Mathematics
ISBN: 0898719984

Download A First Course in Numerical Methods Book in PDF, ePub and Kindle

Offers students a practical knowledge of modern techniques in scientific computing.


Mathematical Foundations of Finite Elements and Iterative Solvers

Mathematical Foundations of Finite Elements and Iterative Solvers
Author: SCI085000
Publisher: SIAM
Total Pages: 186
Release: 2022-06-27
Genre: Mathematics
ISBN: 1611977096

Download Mathematical Foundations of Finite Elements and Iterative Solvers Book in PDF, ePub and Kindle

“This book combines an updated look, at an advanced level, of the mathematical theory of the finite element method (including some important recent developments), and a presentation of many of the standard iterative methods for the numerical solution of the linear system of equations that results from finite element discretization, including saddle point problems arising from mixed finite element approximation. For the reader with some prior background in the subject, this text clarifies the importance of the essential ideas and provides a deeper understanding of how the basic concepts fit together.” — Richard S. Falk, Rutgers University “Students of applied mathematics, engineering, and science will welcome this insightful and carefully crafted introduction to the mathematics of finite elements and to algorithms for iterative solvers. Concise, descriptive, and entertaining, the text covers all of the key mathematical ideas and concepts dealing with finite element approximations of problems in mechanics and physics governed by partial differential equations while interweaving basic concepts on Sobolev spaces and basic theorems of functional analysis presented in an effective tutorial style.” — J. Tinsley Oden, The University of Texas at Austin This textbook describes the mathematical principles of the finite element method, a technique that turns a (linear) partial differential equation into a discrete linear system, often amenable to fast linear algebra. Reflecting the author’s decade of experience in the field, Mathematical Foundations of Finite Elements and Iterative Solvers examines the crucial interplay between analysis, discretization, and computations in modern numerical analysis; furthermore, it recounts historical developments leading to current state-of-the-art techniques. While self-contained, this textbook provides a clear and in-depth discussion of several topics, including elliptic problems, continuous Galerkin methods, iterative solvers, advection-diffusion problems, and saddle point problems. Accessible to readers with a beginning background in functional analysis and linear algebra, this text can be used in graduate-level courses on advanced numerical analysis, data science, numerical optimization, and approximation theory. Professionals in numerical analysis and finite element methods will also find the book of interest.


Vector Extrapolation Methods with Applications

Vector Extrapolation Methods with Applications
Author: Avram Sidi
Publisher: SIAM
Total Pages: 421
Release: 2017-09-26
Genre: Science
ISBN: 1611974968

Download Vector Extrapolation Methods with Applications Book in PDF, ePub and Kindle

An important problem that arises in different disciplines of science and engineering is that of computing limits of sequences of vectors of very large dimension. Such sequences arise, for example, in the numerical solution of systems of linear and nonlinear equations by fixed-point iterative methods, and their limits are simply the required solutions to these systems. The convergence of these sequences, which is very slow in many cases, can be accelerated successfully by using suitable vector extrapolation methods. Vector Extrapolation Methods with Applications is the first book fully dedicated to the subject of vector extrapolation methods. It is a self-contained, up-to-date, and state-of-the-art reference on the theory and practice of the most useful methods. It covers all aspects of the subject, including development of the methods, their convergence study, numerically stable algorithms for their implementation, and their various applications. It also provides complete proofs in most places. As an interesting application, the author shows how these methods give rise to rational approximation procedures for vector-valued functions in the complex plane, a subject of importance in model reduction problems among others. This book is intended for numerical analysts, applied mathematicians, and computational scientists and engineers in fields such as computational fluid dynamics, structures, and mechanical and electrical engineering, to name a few. Since it provides complete proofs in most places, it can also serve as a textbook in courses on acceleration of convergence of iterative vector processes, for example.


Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics

Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics
Author: Gianluigi Rozza
Publisher: SIAM
Total Pages: 501
Release: 2022-11-21
Genre: Mathematics
ISBN: 1611977258

Download Advanced Reduced Order Methods and Applications in Computational Fluid Dynamics Book in PDF, ePub and Kindle

Reduced order modeling is an important, growing field in computational science and engineering, and this is the first book to address the subject in relation to computational fluid dynamics. It focuses on complex parametrization of shapes for their optimization and includes recent developments in advanced topics such as turbulence, stability of flows, inverse problems, optimization, and flow control, as well as applications. This book will be of interest to researchers and graduate students in the field of reduced order modeling.


Model Reduction and Approximation

Model Reduction and Approximation
Author: Peter Benner
Publisher: SIAM
Total Pages: 421
Release: 2017-07-06
Genre: Science
ISBN: 161197481X

Download Model Reduction and Approximation Book in PDF, ePub and Kindle

Many physical, chemical, biomedical, and technical processes can be described by partial differential equations or dynamical systems. In spite of increasing computational capacities, many problems are of such high complexity that they are solvable only with severe simplifications, and the design of efficient numerical schemes remains a central research challenge. This book presents a tutorial introduction to recent developments in mathematical methods for model reduction and approximation of complex systems. Model Reduction and Approximation: Theory and Algorithms contains three parts that cover (I) sampling-based methods, such as the reduced basis method and proper orthogonal decomposition, (II) approximation of high-dimensional problems by low-rank tensor techniques, and (III) system-theoretic methods, such as balanced truncation, interpolatory methods, and the Loewner framework. It is tutorial in nature, giving an accessible introduction to state-of-the-art model reduction and approximation methods. It also covers a wide range of methods drawn from typically distinct communities (sampling based, tensor based, system-theoretic).?? This book is intended for researchers interested in model reduction and approximation, particularly graduate students and young researchers.


Mathematical Theory of Finite Elements

Mathematical Theory of Finite Elements
Author: Leszek F. Demkowicz
Publisher: SIAM
Total Pages: 217
Release: 2023-09-22
Genre: Mathematics
ISBN: 1611977738

Download Mathematical Theory of Finite Elements Book in PDF, ePub and Kindle

This book discusses the foundations of the mathematical theory of finite element methods. The focus is on two subjects: the concept of discrete stability, and the theory of conforming elements forming the exact sequence. Both coercive and noncoercive problems are discussed.. Following the historical path of development, the author covers the Ritz and Galerkin methods to Mikhlin’s theory, followed by the Lax–Milgram theorem and Cea’s lemma to the Babuska theorem and Brezzi’s theory. He finishes with an introduction to the discontinuous Petrov–Galerkin (DPG) method with optimal test functions. Based on the author’s personal lecture notes for a popular version of his graduate course on mathematical theory of finite elements, the book includes a unique exposition of the concept of discrete stability and the means to guarantee it, a coherent presentation of finite elements forming the exact grad-curl-div sequence, and an introduction to the DPG method. Intended for graduate students in computational science, engineering, and mathematics programs, Mathematical Theory of Finite Elements is also appropriate for graduate mathematics and mathematically oriented engineering students. Instructors will find the book useful for courses in real analysis, functional analysis, energy (Sobolev) spaces, and Hilbert space methods for PDEs.


An Introduction to Compressed Sensing

An Introduction to Compressed Sensing
Author: M. Vidyasagar
Publisher: SIAM
Total Pages: 341
Release: 2019-12-03
Genre: Technology & Engineering
ISBN: 161197612X

Download An Introduction to Compressed Sensing Book in PDF, ePub and Kindle

Compressed sensing is a relatively recent area of research that refers to the recovery of high-dimensional but low-complexity objects from a limited number of measurements. The topic has applications to signal/image processing and computer algorithms, and it draws from a variety of mathematical techniques such as graph theory, probability theory, linear algebra, and optimization. The author presents significant concepts never before discussed as well as new advances in the theory, providing an in-depth initiation to the field of compressed sensing. An Introduction to Compressed Sensing contains substantial material on graph theory and the design of binary measurement matrices, which is missing in recent texts despite being poised to play a key role in the future of compressed sensing theory. It also covers several new developments in the field and is the only book to thoroughly study the problem of matrix recovery. The book supplies relevant results alongside their proofs in a compact and streamlined presentation that is easy to navigate. The core audience for this book is engineers, computer scientists, and statisticians who are interested in compressed sensing. Professionals working in image processing, speech processing, or seismic signal processing will also find the book of interest.


Methods in Computational Science

Methods in Computational Science
Author: Johan Hoffman
Publisher: SIAM
Total Pages: 425
Release: 2021-10-19
Genre: Computers
ISBN: 1611976723

Download Methods in Computational Science Book in PDF, ePub and Kindle

Computational methods are an integral part of most scientific disciplines, and a rudimentary understanding of their potential and limitations is essential for any scientist or engineer. This textbook introduces computational science through a set of methods and algorithms, with the aim of familiarizing the reader with the field’s theoretical foundations and providing the practical skills to use and develop computational methods. Centered around a set of fundamental algorithms presented in the form of pseudocode, this self-contained textbook extends the classical syllabus with new material, including high performance computing, adjoint methods, machine learning, randomized algorithms, and quantum computing. It presents theoretical material alongside several examples and exercises and provides Python implementations of many key algorithms. Methods in Computational Science is for advanced undergraduate and graduate-level students studying computer science and data science. It can also be used to support continuous learning for practicing mathematicians, data scientists, computer scientists, and engineers in the field of computational science. It is appropriate for courses in advanced numerical analysis, data science, numerical optimization, and approximation theory.