Problems In Molecular Orbital Theory PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Problems In Molecular Orbital Theory PDF full book. Access full book title Problems In Molecular Orbital Theory.

Problems in Molecular Orbital Theory

Problems in Molecular Orbital Theory
Author: Thomas A. Albright
Publisher: Oxford University Press on Demand
Total Pages: 285
Release: 1992
Genre: Science
ISBN: 9780195071757

Download Problems in Molecular Orbital Theory Book in PDF, ePub and Kindle

This supplementary problems book, to be used in conjunction with a molecular orbital theory textbook at the senior, first-year graduate level in chemistry courses, is written by leading authorities in molecular orbital theory research and teaching. The text will be useful for courses in advanced inorganic, physical organic, and group theory. Because many different compounds are presented, the instructor can develop a "personalized course" by selecting problems from a variety of research interests. Carefully worked out solutions, including a large number of informal diagrams, are provided for all questions and problems. In addition to its practical use for courses, this textbook will also be of interest to individual chemists who want to upgrade their knowledge of molecular orbital theory.


Orbital Interactions in Chemistry

Orbital Interactions in Chemistry
Author: Thomas A. Albright
Publisher: John Wiley & Sons
Total Pages: 853
Release: 2013-04-08
Genre: Science
ISBN: 047108039X

Download Orbital Interactions in Chemistry Book in PDF, ePub and Kindle

Explains the underlying structure that unites all disciplinesin chemistry Now in its second edition, this book explores organic,organometallic, inorganic, solid state, and materials chemistry,demonstrating how common molecular orbital situations arisethroughout the whole chemical spectrum. The authors explore therelationships that enable readers to grasp the theory thatunderlies and connects traditional fields of study withinchemistry, thereby providing a conceptual framework with which tothink about chemical structure and reactivity problems. Orbital Interactions in Chemistry begins by developingmodels and reviewing molecular orbital theory. Next, the bookexplores orbitals in the organic-main group as well as in solids.Lastly, the book examines orbital interaction patterns that occurin inorganic-organometallic fields as well as clusterchemistry, surface chemistry, and magnetism in solids. This Second Edition has been thoroughly revised andupdated with new discoveries and computational tools since thepublication of the first edition more than twenty-five years ago.Among the new content, readers will find: * Two new chapters dedicated to surface science and magneticproperties * Additional examples of quantum calculations, focusing oninorganic and organometallic chemistry * Expanded treatment of group theory * New results from photoelectron spectroscopy Each section ends with a set of problems, enabling readers totest their grasp of new concepts as they progress through the text.Solutions are available on the book's ftp site. Orbital Interactions in Chemistry is written for bothresearchers and students in organic, inorganic, solid state,materials, and computational chemistry. All readers will discoverthe underlying structure that unites all disciplines inchemistry.


Molecular Orbitals and Organic Chemical Reactions

Molecular Orbitals and Organic Chemical Reactions
Author: Ian Fleming
Publisher: John Wiley & Sons
Total Pages: 389
Release: 2011-08-31
Genre: Science
ISBN: 1119964652

Download Molecular Orbitals and Organic Chemical Reactions Book in PDF, ePub and Kindle

Winner of the PROSE Award for Chemistry & Physics 2010 Acknowledging the very best in professional and scholarly publishing, the annual PROSE Awards recognise publishers' and authors' commitment to pioneering works of research and for contributing to the conception, production, and design of landmark works in their fields. Judged by peer publishers, librarians, and medical professionals, Wiley are pleased to congratulate Professor Ian Fleming, winner of the PROSE Award in Chemistry and Physics for Molecular Orbitals and Organic Chemical Reactions. Molecular orbital theory is used by chemists to describe the arrangement of electrons in chemical structures. It is also a theory capable of giving some insight into the forces involved in the making and breaking of chemical bonds—the chemical reactions that are often the focus of an organic chemist's interest. Organic chemists with a serious interest in understanding and explaining their work usually express their ideas in molecular orbital terms, so much so that it is now an essential component of every organic chemist's skills to have some acquaintance with molecular orbital theory. Molecular Orbitals and Organic Chemical Reactions is both a simplified account of molecular orbital theory and a review of its applications in organic chemistry; it provides a basic introduction to the subject and a wealth of illustrative examples. In this book molecular orbital theory is presented in a much simplified, and entirely non-mathematical language, accessible to every organic chemist, whether student or research worker, whether mathematically competent or not. Topics covered include: Molecular Orbital Theory Molecular Orbitals and the Structures of Organic Molecules Chemical Reactions — How Far and How Fast Ionic Reactions — Reactivity Ionic Reactions — Stereochemistry Pericyclic Reactions Radical Reactions Photochemical Reactions Slides for lectures and presentations are available on the supplementary website: www.wiley.com/go/fleming_student Molecular Orbitals and Organic Chemical Reactions: Student Edition is an invaluable first textbook on this important subject for students of organic, physical organic and computational chemistry. The Reference Edition edition takes the content and the same non-mathematical approach of the Student Edition, and adds extensive extra subject coverage, detail and over 1500 references. The additional material adds a deeper understanding of the models used, and includes a broader range of applications and case studies. Providing a complete in-depth reference for a more advanced audience, this edition will find a place on the bookshelves of researchers and advanced students of organic, physical organic and computational chemistry. Further information can be viewed here. "These books are the result of years of work, which began as an attempt to write a second edition of my 1976 book Frontier Orbitals and Organic Chemical Reactions. I wanted to give a rather more thorough introduction to molecular orbitals, while maintaining my focus on the organic chemist who did not want a mathematical account, but still wanted to understand organic chemistry at a physical level. I'm delighted to win this prize, and hope a new generation of chemists will benefit from these books." -Professor Ian Fleming


A Chemist's Guide to Valence Bond Theory

A Chemist's Guide to Valence Bond Theory
Author: Sason S. Shaik
Publisher: John Wiley & Sons
Total Pages: 332
Release: 2007-12-04
Genre: Science
ISBN: 0470037350

Download A Chemist's Guide to Valence Bond Theory Book in PDF, ePub and Kindle

This reference on current VB theory and applications presents a practical system that can be applied to a variety of chemical problems in a uniform manner. After explaining basic VB theory, it discusses VB applications to bonding problems, aromaticity and antiaromaticity, the dioxygen molecule, polyradicals, excited states, organic reactions, inorganic/organometallic reactions, photochemical reactions, and catalytic reactions. With a guide for performing VB calculations, exercises and answers, and numerous solved problems, this is the premier reference for practitioners and upper-level students.


Life of a Scientist

Life of a Scientist
Author: Robert S. Mulliken
Publisher: Springer Science & Business Media
Total Pages: 269
Release: 2012-12-06
Genre: Science
ISBN: 3642613209

Download Life of a Scientist Book in PDF, ePub and Kindle

Robert S. Mulliken, Nobel Laureate in chemistry, always had the intention to write a book about his field of research: molecular orbital theory. This is his scientific autobiography, edited posthumously by his former student Bernard J. Ransil and complemented with a memoir by Friedrich Hund, his scientific protagonist. Mulliken describes his career and gives an account of the contributions of his friends and colleagues at home and in Europe where he frequently travelled. And last but not least, he gives an accurate history of how the molecular orbital theory originated and how it evolved in an atmosphere of international exchange. The book is written in a particularly lively style, full of reminiscences and scientific facts, interwoven to produce an account of the Life of a Scientist.


A Textbook of Inorganic Chemistry – Volume 1

A Textbook of Inorganic Chemistry – Volume 1
Author: Mandeep Dalal
Publisher: Dalal Institute
Total Pages: 480
Release: 2017-01-01
Genre: Science
ISBN: 8193872002

Download A Textbook of Inorganic Chemistry – Volume 1 Book in PDF, ePub and Kindle

An advanced-level textbook of inorganic chemistry for the graduate (B.Sc) and postgraduate (M.Sc) students of Indian and foreign universities. This book is a part of four volume series, entitled "A Textbook of Inorganic Chemistry – Volume I, II, III, IV". CONTENTS: Chapter 1. Stereochemistry and Bonding in Main Group Compounds: VSEPR theory, dπ -pπ bonds, Bent rule and energetic of hybridization. Chapter 2. Metal-Ligand Equilibria in Solution: Stepwise and overall formation constants and their interactions, Trends in stepwise constants, Factors affecting stability of metal complexes with reference to the nature of metal ion and ligand, Chelate effect and its thermodynamic origin, Determination of binary formation constants by pH-metry and spectrophotometry. Chapter 3. Reaction Mechanism of Transition Metal Complexes – I: Inert and labile complexes, Mechanisms for ligand replacement reactions, Formation of complexes from aquo ions, Ligand displacement reactions in octahedral complexes- acid hydrolysis, Base hydrolysis, Racemization of tris chelate complexes, Electrophilic attack on ligands. Chapter 4. Reaction Mechanism of Transition Metal Complexes – II: Mechanism of ligand displacement reactions in square planar complexes, The trans effect, Theories of trans effect, Mechanism of electron transfer reactions – types; Outer sphere electron transfer mechanism and inner sphere electron transfer mechanism, Electron exchange. Chapter 5. Isopoly and Heteropoly Acids and Salts: Isopoly and Heteropoly acids and salts of Mo and W: structures of isopoly and heteropoly anions. Chapter 6. Crystal Structures: Structures of some binary and ternary compounds such as fluorite, antifluorite, rutile, antirutile, crystobalite, layer lattices- CdI2, BiI3; ReO3, Mn2O3, corundum, pervoskite, Ilmenite and Calcite. Chapter 7. Metal-Ligand Bonding: Limitation of crystal field theory, Molecular orbital theory, octahedral, tetrahedral or square planar complexes, π-bonding and molecular orbital theory. Chapter 8. Electronic Spectra of Transition Metal Complexes: Spectroscopic ground states, Correlation and spin-orbit coupling in free ions for Ist series of transition metals, Orgel and Tanabe-Sugano diagrams for transition metal complexes (d1 – d9 states), Calculation of Dq, B and β parameters, Effect of distortion on the d-orbital energy levels, Structural evidence from electronic spectrum, John-Tellar effect, Spectrochemical and nephalauxetic series, Charge transfer spectra, Electronic spectra of molecular addition compounds. Chapter 9. Magantic Properties of Transition Metal Complexes: Elementary theory of magneto - chemistry, Guoy’s method for determination of magnetic susceptibility, Calculation of magnetic moments, Magnetic properties of free ions, Orbital contribution, effect of ligand-field, Application of magneto-chemistry in structure determination, Magnetic exchange coupling and spin state cross over. Chapter 10. Metal Clusters: Structure and bonding in higher boranes, Wade’s rules, Carboranes, Metal Carbonyl Clusters - Low Nuclearity Carbonyl Clusters, Total Electron Count (TEC). Chapter 11. Metal-π Complexes: Metal carbonyls, structure and bonding, Vibrational spectra of metal carbonyls for bonding and structure elucidation, Important reactions of metal carbonyls; Preparation, bonding, structure and important reactions of transition metal nitrosyl, dinitrogen and dioxygen complexes; Tertiary phosphine as ligand.


Frontier Orbitals and Organic Chemical Reactions

Frontier Orbitals and Organic Chemical Reactions
Author: Ian Fleming
Publisher: John Wiley & Sons
Total Pages: 249
Release: 1976-01-01
Genre: Science
ISBN: 9780471018193

Download Frontier Orbitals and Organic Chemical Reactions Book in PDF, ePub and Kindle

Provides a basic introduction to frontier orbital theory with a review of its applications in organic chemistry. Assuming the reader is familiar with the concept of molecular orbital as a linear combination of atomic orbitals the book is presented in a simple style, without mathematics making it accessible to readers of all levels.


The DV-Xα Molecular-Orbital Calculation Method

The DV-Xα Molecular-Orbital Calculation Method
Author: Tomohiko Ishii
Publisher: Springer
Total Pages: 358
Release: 2014-11-06
Genre: Science
ISBN: 331911185X

Download The DV-Xα Molecular-Orbital Calculation Method Book in PDF, ePub and Kindle

This multi-author contributed volume contains chapters featuring the development of the DV-Xα method and its application to a variety of problems in Materials Science and Spectroscopy written by leaders of the respective fields. The volume contains a Foreword written by the Chairs of Japanese and Korea DV-X alpha Societies. This book is aimed at individuals working in Quantum Chemistry.