Polynomial Optimization Moments And Applications PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Polynomial Optimization Moments And Applications PDF full book. Access full book title Polynomial Optimization Moments And Applications.

Polynomial Optimization, Moments, and Applications

Polynomial Optimization, Moments, and Applications
Author: Michal Kočvara
Publisher: Springer Nature
Total Pages: 274
Release: 2024-01-28
Genre: Mathematics
ISBN: 3031386590

Download Polynomial Optimization, Moments, and Applications Book in PDF, ePub and Kindle

Polynomial optimization is a fascinating field of study that has revolutionized the way we approach nonlinear problems described by polynomial constraints. The applications of this field range from production planning processes to transportation, energy consumption, and resource control. This introductory book explores the latest research developments in polynomial optimization, presenting the results of cutting-edge interdisciplinary work conducted by the European network POEMA. For the past four years, experts from various fields, including algebraists, geometers, computer scientists, and industrial actors, have collaborated in this network to create new methods that go beyond traditional paradigms of mathematical optimization. By exploiting new advances in algebra and convex geometry, these innovative approaches have resulted in significant scientific and technological advancements. This book aims to make these exciting developments accessible to a wider audience by gathering high-quality chapters on these hot topics. Aimed at both aspiring and established researchers, as well as industry professionals, this book will be an invaluable resource for anyone interested in polynomial optimization and its potential for real-world applications.


Moments, Positive Polynomials and Their Applications

Moments, Positive Polynomials and Their Applications
Author: Jean-Bernard Lasserre
Publisher: World Scientific
Total Pages: 384
Release: 2010
Genre: Mathematics
ISBN: 1848164467

Download Moments, Positive Polynomials and Their Applications Book in PDF, ePub and Kindle

1. The generalized moment problem. 1.1. Formulations. 1.2. Duality theory. 1.3. Computational complexity. 1.4. Summary. 1.5. Exercises. 1.6. Notes and sources -- 2. Positive polynomials. 2.1. Sum of squares representations and semi-definite optimization. 2.2. Nonnegative versus s.o.s. polynomials. 2.3. Representation theorems : univariate case. 2.4. Representation theorems : mutivariate case. 2.5. Polynomials positive on a compact basic semi-algebraic set. 2.6. Polynomials nonnegative on real varieties. 2.7. Representations with sparsity properties. 2.8. Representation of convex polynomials. 2.9. Summary. 2.10. Exercises. 2.11. Notes and sources -- 3. Moments. 3.1. The one-dimensional moment problem. 3.2. The multi-dimensional moment problem. 3.3. The K-moment problem. 3.4. Moment conditions for bounded density. 3.5. Summary. 3.6. Exercises. 3.7. Notes and sources -- 4. Algorithms for moment problems. 4.1. The overall approach. 4.2. Semidefinite relaxations. 4.3. Extraction of solutions. 4.4. Linear relaxations. 4.5. Extensions. 4.6. Exploiting sparsity. 4.7. Summary. 4.8. Exercises. 4.9. Notes and sources. 4.10. Proofs -- 5. Global optimization over polynomials. 5.1. The primal and dual perspectives. 5.2. Unconstrained polynomial optimization. 5.3. Constrained polynomial optimization : semidefinite relaxations. 5.4. Linear programming relaxations. 5.5. Global optimality conditions. 5.6. Convex polynomial programs. 5.7. Discrete optimization. 5.8. Global minimization of a rational function. 5.9. Exploiting symmetry. 5.10. Summary. 5.11. Exercises. 5.12. Notes and sources -- 6. Systems of polynomial equations. 6.1. Introduction. 6.2. Finding a real solution to systems of polynomial equations. 6.3. Finding all complex and/or all real solutions : a unified treatment. 6.4. Summary. 6.5. Exercises. 6.6. Notes and sources -- 7. Applications in probability. 7.1. Upper bounds on measures with moment conditions. 7.2. Measuring basic semi-algebraic sets. 7.3. Measures with given marginals. 7.4. Summary. 7.5. Exercises. 7.6. Notes and sources -- 8. Markov chains applications. 8.1. Bounds on invariant measures. 8.2. Evaluation of ergodic criteria. 8.3. Summary. 8.4. Exercises. 8.5. Notes and sources -- 9. Application in mathematical finance. 9.1. Option pricing with moment information. 9.2. Option pricing with a dynamic model. 9.3. Summary. 9.4. Notes and sources -- 10. Application in control. 10.1. Introduction. 10.2. Weak formulation of optimal control problems. 10.3. Semidefinite relaxations for the OCP. 10.4. Summary. 10.5. Notes and sources -- 11. Convex envelope and representation of convex sets. 11.1. The convex envelope of a rational function. 11.2. Semidefinite representation of convex sets. 11.3. Algebraic certificates of convexity. 11.4. Summary. 11.5. Exercises. 11.6. Notes and sources -- 12. Multivariate integration 12.1. Integration of a rational function. 12.2. Integration of exponentials of polynomials. 12.3. Maximum entropy estimation. 12.4. Summary. 12.5. Exercises. 12.6. Notes and sources -- 13. Min-max problems and Nash equilibria. 13.1. Robust polynomial optimization. 13.2. Minimizing the sup of finitely many rational cunctions. 13.3. Application to Nash equilibria. 13.4. Exercises. 13.5. Notes and sources -- 14. Bounds on linear PDE. 14.1. Linear partial differential equations. 14.2. Notes and sources


Moment and Polynomial Optimization

Moment and Polynomial Optimization
Author: Jiawang Nie
Publisher: SIAM
Total Pages: 484
Release: 2023-06-15
Genre: Mathematics
ISBN: 1611977606

Download Moment and Polynomial Optimization Book in PDF, ePub and Kindle

Moment and polynomial optimization is an active research field used to solve difficult questions in many areas, including global optimization, tensor computation, saddle points, Nash equilibrium, and bilevel programs, and it has many applications. The author synthesizes current research and applications, providing a systematic introduction to theory and methods, a comprehensive approach for extracting optimizers and solving truncated moment problems, and a creative methodology for using optimality conditions to construct tight Moment-SOS relaxations. This book is intended for applied mathematicians, engineers, and researchers entering the field. It can be used as a textbook for graduate students in courses on convex optimization, polynomial optimization, and matrix and tensor optimization.


Genericity In Polynomial Optimization

Genericity In Polynomial Optimization
Author: Tien Son Pham
Publisher: World Scientific
Total Pages: 261
Release: 2016-12-22
Genre: Mathematics
ISBN: 1786342235

Download Genericity In Polynomial Optimization Book in PDF, ePub and Kindle

In full generality, minimizing a polynomial function over a closed semi-algebraic set requires complex mathematical equations. This book explains recent developments from singularity theory and semi-algebraic geometry for studying polynomial optimization problems. Classes of generic problems are defined in a simple and elegant manner by using only the two basic (and relatively simple) notions of Newton polyhedron and non-degeneracy conditions associated with a given polynomial optimization problem. These conditions are well known in singularity theory, however, they are rarely considered within the optimization community.Explanations focus on critical points and tangencies of polynomial optimization, Hölderian error bounds for polynomial systems, Frank-Wolfe-type theorem for polynomial programs and well-posedness in polynomial optimization. It then goes on to look at optimization for the different types of polynomials. Through this text graduate students, PhD students and researchers of mathematics will be provided with the knowledge necessary to use semi-algebraic geometry in optimization.


Sparse Polynomial Optimization: Theory And Practice

Sparse Polynomial Optimization: Theory And Practice
Author: Victor Magron
Publisher: World Scientific
Total Pages: 223
Release: 2023-04-25
Genre: Mathematics
ISBN: 1800612966

Download Sparse Polynomial Optimization: Theory And Practice Book in PDF, ePub and Kindle

Many applications, including computer vision, computer arithmetic, deep learning, entanglement in quantum information, graph theory and energy networks, can be successfully tackled within the framework of polynomial optimization, an emerging field with growing research efforts in the last two decades. One key advantage of these techniques is their ability to model a wide range of problems using optimization formulations. Polynomial optimization heavily relies on the moment-sums of squares (moment-SOS) approach proposed by Lasserre, which provides certificates for positive polynomials. On the practical side, however, there is 'no free lunch' and such optimization methods usually encompass severe scalability issues. Fortunately, for many applications, including the ones formerly mentioned, we can look at the problem in the eyes and exploit the inherent data structure arising from the cost and constraints describing the problem.This book presents several research efforts to resolve this scientific challenge with important computational implications. It provides the development of alternative optimization schemes that scale well in terms of computational complexity, at least in some identified class of problems. It also features a unified modeling framework to handle a wide range of applications involving both commutative and noncommutative variables, and to solve concretely large-scale instances. Readers will find a practical section dedicated to the use of available open-source software libraries.This interdisciplinary monograph is essential reading for students, researchers and professionals interested in solving optimization problems with polynomial input data.


An Introduction to Polynomial and Semi-Algebraic Optimization

An Introduction to Polynomial and Semi-Algebraic Optimization
Author: Jean Bernard Lasserre
Publisher: Cambridge University Press
Total Pages: 355
Release: 2015-02-19
Genre: Mathematics
ISBN: 1316240398

Download An Introduction to Polynomial and Semi-Algebraic Optimization Book in PDF, ePub and Kindle

This is the first comprehensive introduction to the powerful moment approach for solving global optimization problems (and some related problems) described by polynomials (and even semi-algebraic functions). In particular, the author explains how to use relatively recent results from real algebraic geometry to provide a systematic numerical scheme for computing the optimal value and global minimizers. Indeed, among other things, powerful positivity certificates from real algebraic geometry allow one to define an appropriate hierarchy of semidefinite (SOS) relaxations or LP relaxations whose optimal values converge to the global minimum. Several extensions to related optimization problems are also described. Graduate students, engineers and researchers entering the field can use this book to understand, experiment with and master this new approach through the simple worked examples provided.


Contributions to the Moment-SOS Approach in Global Polynomial Optimization

Contributions to the Moment-SOS Approach in Global Polynomial Optimization
Author: Thanh Tung Phan
Publisher:
Total Pages: 119
Release: 2012
Genre:
ISBN:

Download Contributions to the Moment-SOS Approach in Global Polynomial Optimization Book in PDF, ePub and Kindle

Polynomial Optimization is concerned with optimization problems of the form (P) : f* = { f(x) with x in set K}, where K is a basic semi-algebraic set in Rn defined by K={x in Rn such as gj(x) less or equal 0}; and f is a real polynomial of n variables x = (x1, x2, ..., xn). In this thesis we are interested in problems (P) where symmetries and/or structured sparsity are not easy to detect or to exploit, and where only a few (or even no) semidefinite relaxations of the moment-SOS approach can be implemented. And the issue we investigate is: How can the moment-SOS methodology be still used to help solve such problem (P)? We provide two applications of the moment-SOS approach to help solve (P) in two different contexts. * In a first contribution we consider MINLP problems on a box B = [xL, xU] of Rn and propose a moment-SOS approach to construct polynomial convex underestimators for the objective function f (if non convex) and for -gj if in the constraint gj(x) less or equal 0, the polynomial gj is not concave. We work in the context where one wishes to find a convex underestimator of a non-convex polynomial f of a few variables on a box B of Rn. The novelty with previous works on this topic is that we want to compute a polynomial convex underestimator p of f that minimizes the important tightness criterion which is the L1 norm of (f-h) on B, over all convex polynomials h of degree d _fixed. Indeed in previous works for computing a convex underestimator L of f, this tightness criterion is not taken into account directly. It turns out that the moment-SOS approach is well suited to compute a polynomial convex underestimator p that minimizes the tightness criterion and numerical experiments on a sample of non-trivial examples show that p outperforms L not only with respect to the tightness score but also in terms of the resulting lower bounds obtained by minimizing respectively p and L on B. Similar improvements also occur when we use the moment-SOS underestimator instead of the aBB-one in refinements of the aBB method. * In a second contribution we propose an algorithm that also uses an optimal solution of a semidefinite relaxation in the moment-SOS hierarchy (in fact a slight modification) to provide a feasible solution for the initial optimization problem but with no rounding procedure. In the present context, we treat the first variable x1 of x = (x1, x2, ...., xn) as a parameter in some bounded interval Y of R. Notice that f*=min { J(y) : y in Y} where J is the function J(y) := inf {f(x) : x in K ; x1=y}. That is one has reduced the original n-dimensional optimization problem (P) to an equivalent one-dimensional optimization problem on an interval. But of course determining the optimal value function J is even more complicated than (P) as one has to determine a function (instead of a point in Rn), an infinite-dimensional problem. But the idea is to approximate J(y) on Y by a univariate polynomial p(y) with the degree d and fortunately, computing such a univariate polynomial is possible via solving a semidefinite relaxation associated with the parameter optimization problem. The degree d of p(y) is related to the size of this semidefinite relaxation. The higher the degree d is, the better is the approximation of J(y) by p(y) and in fact, one may show that p(y) converges to J(y) in a strong sense on Y as d increases. But of course the resulting semidefinite relaxation becomes harder (or impossible) to solve as d increases and so in practice d is fixed to a small value. Once the univariate polynomial p(y) has been determined, one computes x1* in Y that minimizes p(y) on Y, a convex optimization problem that can be solved efficiently. The process is iterated to compute x2 in a similar manner, and so on, until a point x in Rn has been computed. Finally, as x* is not feasible in general, we then use x* as a starting point for a local optimization procedure to find a final feasible point x in K. When K is convex, the following variant is implemented. After having computed x1* as indicated, x2* is computed with x1 fixed at the value x1*, and x3 is computed with x1 and x2 fixed at the values x1* and x2* respectively, etc., so that the resulting point x* is feasible, i.e., x* in K. The same variant applies for 0/1 programs for which feasibility is easy to detect like e.g., for MAXCUT, k-CLUSTER or 0/1-KNAPSACK problems.


Approximation Methods for Polynomial Optimization

Approximation Methods for Polynomial Optimization
Author: Zhening Li
Publisher: Springer Science & Business Media
Total Pages: 129
Release: 2012-07-25
Genre: Mathematics
ISBN: 1461439841

Download Approximation Methods for Polynomial Optimization Book in PDF, ePub and Kindle

Polynomial optimization have been a hot research topic for the past few years and its applications range from Operations Research, biomedical engineering, investment science, to quantum mechanics, linear algebra, and signal processing, among many others. In this brief the authors discuss some important subclasses of polynomial optimization models arising from various applications, with a focus on approximations algorithms with guaranteed worst case performance analysis. The brief presents a clear view of the basic ideas underlying the design of such algorithms and the benefits are highlighted by illustrative examples showing the possible applications. This timely treatise will appeal to researchers and graduate students in the fields of optimization, computational mathematics, Operations Research, industrial engineering, and computer science.


Semidefinite Optimization and Convex Algebraic Geometry

Semidefinite Optimization and Convex Algebraic Geometry
Author: Grigoriy Blekherman
Publisher: SIAM
Total Pages: 487
Release: 2013-03-21
Genre: Mathematics
ISBN: 1611972280

Download Semidefinite Optimization and Convex Algebraic Geometry Book in PDF, ePub and Kindle

An accessible introduction to convex algebraic geometry and semidefinite optimization. For graduate students and researchers in mathematics and computer science.