Photo Driven Seawater Splitting For Hydrogen Production PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Photo Driven Seawater Splitting For Hydrogen Production PDF full book. Access full book title Photo Driven Seawater Splitting For Hydrogen Production.

Photo-Driven Seawater Splitting for Hydrogen Production

Photo-Driven Seawater Splitting for Hydrogen Production
Author: Xiao-Yu Yang
Publisher: Springer Nature
Total Pages: 407
Release: 2023-04-29
Genre: Technology & Engineering
ISBN: 9819905109

Download Photo-Driven Seawater Splitting for Hydrogen Production Book in PDF, ePub and Kindle

This book presents photo-driven seawater splitting technologies for hydrogen production. This technology is considered as a win–win interplay for both the utilization of solar energy as the most renewable energy and seawater as the most hydrogen source. The book also discusses topics from raw materials selection, characterization and mechanistic insights to the latest research developments in response to the need for environmentally friendly and low-carbon industries. In addition, it provides insights into a most attractive energy-conversion and storage cascade by combining solar energy and a hydrogen system. Given its scope, this book appeals to a broad readership, particularly professionals at universities and scientific research institutes, as well as practitioners in industry.


Development of a New Hybrid Photochemical/electrocatalytic Water Splitting Reactor for Hydrogen Production

Development of a New Hybrid Photochemical/electrocatalytic Water Splitting Reactor for Hydrogen Production
Author: Ehsan Baniasadi
Publisher:
Total Pages: 0
Release: 2012
Genre:
ISBN:

Download Development of a New Hybrid Photochemical/electrocatalytic Water Splitting Reactor for Hydrogen Production Book in PDF, ePub and Kindle

Solar-driven water splitting combines several attractive features for sustainable energy utilization. The conversion of solar energy to a type of storable energy has crucial importance. An alternative method to hydrogen production by solar energy without consumption of additional reactants is a hybrid system which combines photochemical and electro-catalytic reactions. The originality of this research lies in the engineering development of a novel photo-catalytic water splitting reactor for sustainable hydrogen production, and verification of new methods to enhance system efficiency. The scope of this thesis is to present a thorough understanding of complete photocatalytic water splitting system performance under realistic working conditions. In this dissertation, an experimental apparatus for hydrogen and oxygen production is designed and built at UOIT to simulate processes encountered in photo-catalytic and electro-catalytic water splitting systems. The hybridization of this system is investigated, and scale-up analysis is performed based on experimental data using a systematic methodology. The hydrogen production rate of approximately 0.6 mmol h-1 corresponds to a quantum efficiency of 75% is measured through illumination of zinc sulfide suspensions in a dual-cell reactor. Utilization of ZnS and CdS photo-catalysts to simultaneously enhance quantum yield and exergy efficiency is performed. The production rate is increased by almost 30% as compared with ZnS performance. In the next step, an oxygen production reactor is experimentally investigated to simulate processes encountered in electro-catalytic water splitting systems for hydrogen production. In this research, the effects of ohmic, concentration and activation losses on the efficiency of hydrogen production by water electrolysis are experimentally investigated. The electrochemical performance of the system is examined by controlling the current density, temperature, space, height, and electrolyte concentration. The experimental results show that there exists an optimum working condition of water electro-catalysis at each current density, which is determined by the controlling parameters. A predictive mathematical model based on experimental data is developed, and the optimized working conditions are determined. The oxygen evolving half-cell is also analyzed for different complete systems including photo-catalytic and electro-catalytic water splitting. An electrochemical model is developed to evaluate the over-potential losses in the oxygen evolving reaction and the effects of key parameters are analyzed. The transient diffusion of hydroxide ions through the membrane and bulk electrolyte is modeled and simulated for improved system operation. In addition, a new seawater electrolysis technique to produce hydrogen is developed and analyzed from energy and exergy points of view. In this regard, the anolyte feed after oxygen evolution to the cathode compartment for hydrogen production is examined. An inexpensive and efficient molybdenum-oxo catalyst with a turn-over frequency of 1,200 is examined for the hydrogen evolving reaction. The electrolyte flow rate and current density are parametrically studied to determine the effects on both bulk and surface precipitate formation. The mixing electrolyte volume and electrolyte flow rate are found to be significant parameters as they affect cathodic precipitation. Furthermore, a new hybrid system for hydrogen production via solar energy is developed and analyzed. In order to decompose water into hydrogen and oxygen without the net consumption of additional reactants, a steady stream of reacting materials must be maintained in consecutive reaction processes, to avoid reactant replenishment or additional energy input to facilitate the reaction. Supramolecular complexes [{(bpy)2Ru(dpp)}2RhBr2](PF6)5 are employed as the photo-catalysts, and an external electric power supply is used to enhance the photochemical reaction. A light-driven proton pump is used to increase the photochemical efficiency of both O2 and H2 production reactions. The maximum energy conversion of the system can be improved up to 14% by incorporating design modification that yields a corresponding 25% improvement in exergy efficiency. Moreover, a photocatalytic water splitting system is designed and analyzed for continuous operation on a large pilot-plant scale. A Compound Parabolic Concentrator (CPC) is presented for the sunlight-driven hydrogen production system. Energy and exergy analyses and related parametric studies are performed, and the effect of various parameters are analyzed, including catalyst concentration, flow velocity, light intensity, reactor surface absorptivity, and ambient temperature. Two methods of photo-catalytic water splitting and solar methanol steam reforming are investigated as two potential solar-based methods of catalytic hydrogen production. The exergy efficiency, exergy destruction, environmental impact and sustainability index are investigated for these systems, as well as exergoenvironmental analyses. The results show that a trade-off exists in terms of exergy efficiency improvement and CO2 reduction of the photo catalytic hydrogen production system. The exergo-economic study reveals the maximum hydrogen exergy price of 2.12, 0.85, and 0.47 $ kg-1 for production capacities of 1, 100, and 2000 ton day-1, respectively. These results are well below the DOE 2012 target and confirm the viability of this technology.


Photoelectrochemical Hydrogen Generation

Photoelectrochemical Hydrogen Generation
Author: Praveen Kumar
Publisher: Springer Nature
Total Pages: 301
Release: 2022-01-19
Genre: Business & Economics
ISBN: 9811672857

Download Photoelectrochemical Hydrogen Generation Book in PDF, ePub and Kindle

This book describes the hydrogen fuel generation from water via photoelectrochemical process. It elaborates the theory and fundamental concepts of photoelectrochemistry to understand the photoelectrochemical process for water splitting to generate hydrogen fuel. The book further deliberates about the hydrogen as a futuristic chemical fuel to store solar energy in the form of chemical bonds and also as a renewable alternative to fossil fuels. The book establishes the need for hydrogen fuel and discusses the standards and practices used for solar driven photoelectrochemical water splitting. It also discusses the current and future status of the nanomaterials as efficient photoelectrodes for solar photoelectrochemical water splitting. The book will be of interest to the researchers, students, faculty, scientists, engineers, and technologists working in the domain of material science, energy harvesting, energy conversion, photo electrochemistry, nanomaterials for photo-electrochemical (PEC) cell, etc.


Solar-Driven Green Hydrogen Generation and Storage

Solar-Driven Green Hydrogen Generation and Storage
Author: Rohit Srivastava
Publisher: Elsevier
Total Pages: 584
Release: 2023-05-18
Genre: Science
ISBN: 0323995810

Download Solar-Driven Green Hydrogen Generation and Storage Book in PDF, ePub and Kindle

Solar-Driven Green Hydrogen Generation and Storage presents the latest research and technologies in hydrogen generation through solar energy. With in-depth coverage of three key topics, the book discusses green hydrogen technologies, solid hydrogen storage, and hydrogen energy applications. The book begins with a deep dive into photoelectrochemical water splitting, examining different catalysts, such as perovskite-based, phosphorene-based, polymer-based, transition metal-based single atom, blue-titania, carbon-based, Mxene and semiconductor-based catalysts. Subsequent chapters analyze hydrogen production techniques, including electrolysis, photobiological, thermochemical, and biomass gasification methods. After reviewing key hydrogen storage technologies, the book concludes with a summary of the applications of hydrogen in various industry sectors. This book is an essential resource for students, researchers, and engineers interested in renewable energy, hydrogen production, and energy storage. Presents the latest advances in hydrogen generation through solar energy Focuses on three key themes—green hydrogen technologies, solid hydrogen storage, and applications of hydrogen energy Considers the major challenges for the hydrogen economy worldwide


Photocatalytic Hydrogen Production for Sustainable Energy

Photocatalytic Hydrogen Production for Sustainable Energy
Author: Alberto Puga
Publisher: John Wiley & Sons
Total Pages: 341
Release: 2023-05-15
Genre: Science
ISBN: 3527349839

Download Photocatalytic Hydrogen Production for Sustainable Energy Book in PDF, ePub and Kindle

Photocatalytic Hydrogen Production for Sustainable Energy A complete discussion of photocatalytic hydrogen production, including water splitting, biomass or waste valorization, solar reactors, photoelectrochemical technologies, and more In Photocatalytic Hydrogen Production for Sustainable Energy, distinguished researcher Dr. Alberto Puga delivers a comprehensive exploration of photocatalytic hydrogen production. In the book, readers will find explanations of why and how this technology is called to have a significant impact on cleaner and sustainable production of fuels and find a valuable source of information on the mechanisms of light harvesting and the chemical transformations occurring in these processes. The book explains the technical and engineering approaches currently being used in photocatalytic hydrogen production, as well as approaches that may be used in the future for both commercial and research purposes. A fulsome approach to the subject, covering everything from fundamental aspects of photocatalytic water splitting to waste valorization and solar plant operations, the book also includes: A thorough introduction to sustainability and photocatalytic hydrogen production in the context of renewable energy Comprehensive explorations of water splitting under visible light and ultraviolet irradiation Practical discussions of photoreforming and photocatalytic organic synthesis with convenient hydrogen release Fulsome treatments of photoelectrocatalytic water splitting for hydrogen production Perfect for photochemists and catalytic chemists, Photocatalytic Hydrogen Production for Sustainable Energy will also benefit other chemists, chemical engineers, materials scientists, energy engineers and physicists seeking a one-stop resource on the subject.


Photo- and Electro-Catalytic Processes

Photo- and Electro-Catalytic Processes
Author: Jianmin Ma
Publisher: John Wiley & Sons
Total Pages: 596
Release: 2022-01-25
Genre: Technology & Engineering
ISBN: 352734859X

Download Photo- and Electro-Catalytic Processes Book in PDF, ePub and Kindle

Explore green catalytic reactions with this reference from a renowned leader in the field Green reactions—like photo-, photoelectro-, and electro-catalytic reactions—offer viable technologies to solve difficult problems without significant damage to the environment. In particular, some gas-involved reactions are especially useful in the creation of liquid fuels and cost-effective products. In Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction, award-winning researcher Jianmin Ma delivers a comprehensive overview of photo-, electro-, and photoelectron-catalysts in a variety of processes, including O2 reduction, CO2 reduction, N2 reduction, H2 production, water oxidation, oxygen evolution, and hydrogen evolution. The book offers detailed information on the underlying mechanisms, costs, and synthetic methods of catalysts. Filled with authoritative and critical information on green catalytic processes that promise to answer many of our most pressing energy and environmental questions, this book also includes: Thorough introductions to electrocatalytic oxygen reduction and evolution reactions, as well as electrocatalytic hydrogen evolution reactions Comprehensive explorations of electrocatalytic water splitting, CO2 reduction, and N2 reduction Practical discussions of photoelectrocatalytic H2 production, water splitting, and CO2 reduction In-depth examinations of photoelectrochemical oxygen evolution and nitrogen reduction Perfect for catalytic chemists and photochemists, Photo- and Electro-Catalytic Processes: Water Splitting, N2 Fixing, CO2 Reduction also belongs in the libraries of materials scientists and inorganic chemists seeking a one-stop resource on the novel aspects of photo-, electro-, and photoelectro-catalytic reactions.


Hydrogen from Seawater Splitting

Hydrogen from Seawater Splitting
Author: Abhijit Ray
Publisher: IET
Total Pages: 175
Release: 2024-05
Genre: Science
ISBN: 1839534222

Download Hydrogen from Seawater Splitting Book in PDF, ePub and Kindle

Hydrogen is a key vector of decarbonized energy systems. It can be used as long term and seasonal storage for electricity itself, as well as in the automotive sector, for space heating and for the chemical industry. In order to be sustainable, it is vital that hydrogen is generated without carbon emissions. One option is electrocatalysis, which uses electricity to split the water. Other options are photocatalytic and photoelectrochemical technologies that use impinging sunlight directly. Each technique has advantages and shortcomings, and different efficiencies, depending on a range of factors including the materials used. This book provides overviews of the current technologies available for splitting hydrogen from seawater, and explores their benefits and disadvantages. Chapters cover materials, systems and challenges, electrocatalytic, photocatalytic, and photoelectrochemical techniques, functional compound semiconducting films, electrolysis of saline water, and two-dimensional nanomaterials for hydrogen generation. Finally, the editors share their informed view on the future outlook of the field. Hydrogen from Seawater Splitting: Technology and outlook offers valuable insights for researchers in hydrogen technology and energy materials, exploring the current state-of-the-art and posing the key question of increasing efficiencies.


Water Electrolysis for Hydrogen Production

Water Electrolysis for Hydrogen Production
Author: Pasquale Cavaliere
Publisher: Springer Nature
Total Pages: 852
Release: 2023-09-22
Genre: Science
ISBN: 303137780X

Download Water Electrolysis for Hydrogen Production Book in PDF, ePub and Kindle

This book provides a detailed description of hydrogen production through water electrolysis. It starts with the theoretical description of the chemical, thermodynamic, and kinetic issues related to the electrolysis of water. The main available technologies and the ones under development are detailed from a technical and a scientific point of view. At the end of the book Dr. Cavaliere describes the main hydrogen applications and their contribution to the grand energy transition that is expected by the middle of the century. The book also examines the economic issues related to the transition toward the hydrogen society.


Towards Efficient Hydrogen Production Using Water Splitting

Towards Efficient Hydrogen Production Using Water Splitting
Author: Aleksey Izgorodin
Publisher:
Total Pages: 330
Release: 2010
Genre:
ISBN:

Download Towards Efficient Hydrogen Production Using Water Splitting Book in PDF, ePub and Kindle

Although there is no shortage of supply of fossil fuels at the moment, the necessity to reduce green house gas emission and growing difficulties in fossil fuel recovery raise great challenges for the scientific community to develop efficient, low cost alternative energy sources. Hydrogen is sought by many as a way to store and transport energy produced from renewable sources and as a fuel hydrogen produces only water on burning and is not toxic in any way. The main pathways to produce hydrogen can be classified as thermal, electrolytic, and photolytic processes. Most of the hydrogen is currently produced via thermal processes, which use the energy from fossil fuels stored in natural gas, coal or biomass to release hydrogen. Although photolytic processes are very attractive due to the zero greenhouse gas emissions, they can be used for commercial hydrogen production only if limitations related to low efficiency and poor stability can be resolved. State-of-the-art hydrogen producing photoelectrochemical cells have 12.4% efficiency under visible light irradiation and combine several semiconducting materials in a monolithic device. Although efficient, this cell is able to split water only for a few days, making the possibility of commercial application daunting. Thus, the general aim of the project is to develop a novel structure for a stable photo-electrochemical device for water splitting applications. Having high efficiencies for photo electrochemical energy conversion, metal sulfides are promising candidates for use in commercial water splitting systems if their long-term stability can be improved. Cadmium sulfide was chosen for our investigations as a representative of the metal sulfide family, due to its well known properties. In the photo-electrochemical cell developed in this work the light harvester is separated from the electrooxidation and reduction processes that occur in the water splitting cell. The quantum confinement effect observed for semiconducting nanoparticles significantly alters electrical properties of materials that allow for engineering of the desired electrical properties. A range of nanoparticles and nanostructures were prepared in this work in order to investigate the influence of dopant and quantum size effects innanoparticles on the energy structure of the material and their potential to be utilized in the water splitting and electroluminescent applications. In order to address the high costs of production of thin film semiconductors, in this work we have developed a novel method for low cost, efficient deposition of high quality metal sulfide semiconductors and their alloys utilizing electrodeposition from ionic liquids at high temperatures. The structure of the proposed photoelectrochemical cell was created using electrochemical deposition as well as photo-driven electrochemical deposition, which allows in situ deposition of catalyst for water oxidation. It was shown that a multilayered structure of the device based on metal sulfides provides high corrosion resistance of the cell during photo-electrochemical water splitting leading to significant extension of the cell lifetime.