Optimal Transport Networks In Nature PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Optimal Transport Networks In Nature PDF full book. Access full book title Optimal Transport Networks In Nature.

Optimal Transport Networks in Nature

Optimal Transport Networks in Nature
Author: Natalya Kizilova
Publisher: World Scientific Publishing Company
Total Pages: 200
Release: 2010
Genre: Medical
ISBN: 9789812838735

Download Optimal Transport Networks in Nature Book in PDF, ePub and Kindle

This unique book presents a broad range of data on geometry and topology of long-distance liquid transport networks in nature including circulatory and respiratory systems of mammals, trophic fluid transport systems of animals, and conducting systems of higher plants. It is the very first book where evidence of the common design principles and optimal properties of the transportation networks of vascular plants and animals is provided. The book also provides a comprehensive comparative study of the recent measurement results and data analysis, including unique data obtained by the author to conduct systems of plant leaves of different shapes, sizes, venation types and evolutionary ages. It was shown that the mathematical solutions of the optimization problem for the animal and plant conducting systems lead to the same design principles, despite different physical conditions of the fluid transport.


Optimal Transportation Networks

Optimal Transportation Networks
Author: Marc Bernot
Publisher: Springer Science & Business Media
Total Pages: 204
Release: 2009
Genre: Business & Economics
ISBN: 3540693149

Download Optimal Transportation Networks Book in PDF, ePub and Kindle

The transportation problem can be formalized as the problem of finding the optimal way to transport a given measure into another with the same mass. In contrast to the Monge-Kantorovitch problem, recent approaches model the branched structure of such supply networks as minima of an energy functional whose essential feature is to favour wide roads. Such a branched structure is observable in ground transportation networks, in draining and irrigation systems, in electrical power supply systems and in natural counterparts such as blood vessels or the branches of trees. These lectures provide mathematical proof of several existence, structure and regularity properties empirically observed in transportation networks. The link with previous discrete physical models of irrigation and erosion models in geomorphology and with discrete telecommunication and transportation models is discussed. It will be mathematically proven that the majority fit in the simple model sketched in this volume.


Nature-Inspired Computing and Optimization

Nature-Inspired Computing and Optimization
Author: Srikanta Patnaik
Publisher: Springer
Total Pages: 494
Release: 2017-03-07
Genre: Technology & Engineering
ISBN: 3319509209

Download Nature-Inspired Computing and Optimization Book in PDF, ePub and Kindle

The book provides readers with a snapshot of the state of the art in the field of nature-inspired computing and its application in optimization. The approach is mainly practice-oriented: each bio-inspired technique or algorithm is introduced together with one of its possible applications. Applications cover a wide range of real-world optimization problems: from feature selection and image enhancement to scheduling and dynamic resource management, from wireless sensor networks and wiring network diagnosis to sports training planning and gene expression, from topology control and morphological filters to nutritional meal design and antenna array design. There are a few theoretical chapters comparing different existing techniques, exploring the advantages of nature-inspired computing over other methods, and investigating the mixing time of genetic algorithms. The book also introduces a wide range of algorithms, including the ant colony optimization, the bat algorithm, genetic algorithms, the collision-based optimization algorithm, the flower pollination algorithm, multi-agent systems and particle swarm optimization. This timely book is intended as a practice-oriented reference guide for students, researchers and professionals.


Optimal Transport

Optimal Transport
Author: Cédric Villani
Publisher: Springer Science & Business Media
Total Pages: 970
Release: 2008-10-26
Genre: Mathematics
ISBN: 3540710507

Download Optimal Transport Book in PDF, ePub and Kindle

At the close of the 1980s, the independent contributions of Yann Brenier, Mike Cullen and John Mather launched a revolution in the venerable field of optimal transport founded by G. Monge in the 18th century, which has made breathtaking forays into various other domains of mathematics ever since. The author presents a broad overview of this area, supplying complete and self-contained proofs of all the fundamental results of the theory of optimal transport at the appropriate level of generality. Thus, the book encompasses the broad spectrum ranging from basic theory to the most recent research results. PhD students or researchers can read the entire book without any prior knowledge of the field. A comprehensive bibliography with notes that extensively discuss the existing literature underlines the book’s value as a most welcome reference text on this subject.


Computational Optimal Transport

Computational Optimal Transport
Author: Gabriel Peyre
Publisher: Foundations and Trends(r) in M
Total Pages: 272
Release: 2019-02-12
Genre: Computers
ISBN: 9781680835502

Download Computational Optimal Transport Book in PDF, ePub and Kindle

The goal of Optimal Transport (OT) is to define geometric tools that are useful to compare probability distributions. Their use dates back to 1781. Recent years have witnessed a new revolution in the spread of OT, thanks to the emergence of approximate solvers that can scale to sizes and dimensions that are relevant to data sciences. Thanks to this newfound scalability, OT is being increasingly used to unlock various problems in imaging sciences (such as color or texture processing), computer vision and graphics (for shape manipulation) or machine learning (for regression, classification and density fitting). This monograph reviews OT with a bias toward numerical methods and their applications in data sciences, and sheds lights on the theoretical properties of OT that make it particularly useful for some of these applications. Computational Optimal Transport presents an overview of the main theoretical insights that support the practical effectiveness of OT before explaining how to turn these insights into fast computational schemes. Written for readers at all levels, the authors provide descriptions of foundational theory at two-levels. Generally accessible to all readers, more advanced readers can read the specially identified more general mathematical expositions of optimal transport tailored for discrete measures. Furthermore, several chapters deal with the interplay between continuous and discrete measures, and are thus targeting a more mathematically-inclined audience. This monograph will be a valuable reference for researchers and students wishing to get a thorough understanding of Computational Optimal Transport, a mathematical gem at the interface of probability, analysis and optimization.


Nature's Fabric

Nature's Fabric
Author: David Lee
Publisher: University of Chicago Press
Total Pages: 469
Release: 2017-09-28
Genre: Science
ISBN: 022618062X

Download Nature's Fabric Book in PDF, ePub and Kindle

Leaves are all around us—in backyards, cascading from window boxes, even emerging from small cracks in city sidewalks given the slightest glint of sunlight. Perhaps because they are everywhere, it’s easy to overlook the humble leaf, but a close look at them provides one of the most enjoyable ways to connect with the natural world. A lush, incredibly informative tribute to the leaf, Nature’s Fabric offers an introduction to the science of leaves, weaving biology and chemistry with the history of the deep connection we feel with all things growing and green. Leaves come in a staggering variety of textures and shapes: they can be smooth or rough, their edges smooth, lobed, or with tiny teeth. They have adapted to their environments in remarkable, often stunningly beautiful ways—from the leaves of carnivorous plants, which have tiny “trigger hairs” that signal the trap to close, to the impressive defense strategies some leaves have evolved to reduce their consumption. (Recent studies suggest, for example, that some plants can detect chewing vibrations and mobilize potent chemical defenses.) In many cases, we’ve learned from the extraordinary adaptations of leaves, such as the invention of new self-cleaning surfaces inspired by the slippery coating found on leaves. But we owe much more to leaves, and Lee also calls our attention back to the fact that that our very lives—and the lives of all on the planet—depend on them. Not only is foliage is the ultimate source of food for every living thing on land, its capacity to cycle carbon dioxide and oxygen can be considered among evolution’s most important achievements—and one that is critical in mitigating global climate change. Taking readers through major topics like these while not losing sight of the small wonders of nature we see every day—if you’d like to identify a favorite leaf, Lee’s glossary of leaf characteristics means you won’t be left out on a limb—Nature’s Fabric is eminently readable and full of intriguing research, sure to enhance your appreciation for these extraordinary green machines.


Thermodynamics of Fluids Under Flow

Thermodynamics of Fluids Under Flow
Author: David Jou
Publisher: Springer Science & Business Media
Total Pages: 304
Release: 2010-12-02
Genre: Science
ISBN: 9400701993

Download Thermodynamics of Fluids Under Flow Book in PDF, ePub and Kindle

This is the second edition of the book “Thermodynamics of Fluids under Flow,” which was published in 2000 and has now been corrected, expanded and updated. This is a companion book to our other title Extended irreversible thermodynamics (D. Jou, J. Casas-Vázquez and G. Lebon, Springer, 4th edition 2010), and of the textbook Understanding non-equilibrium thermodynamics (G. Lebon, D. Jou and J. Casas-Vázquez, Springer, 2008. The present book is more specialized than its counterpart, as it focuses its attention on the non-equilibrium thermodynamics of flowing fluids, incorporating non-trivial thermodynamic contributions of the flow, going beyond local equilibrium theories, i.e., including the effects of internal variables and of external forcing due to the flow. Whereas the book's first edition was much more focused on polymer solutions, with brief glimpses into ideal and real gases, the present edition covers a much wider variety of systems, such as: diluted and concentrated polymer solutions, polymer blends, laminar and turbulent superfluids, phonon hydrodynamics and heat transport in nanosystems, nuclear collisions, far-from-equilibrium ideal gases, and molecular solutions. It also deals with a variety of situations, emphasizing the non-equilibrium flow contribution: temperature and entropy in flowing ideal gases, shear-induced effects on phase transitions in real gases and on polymer solutions, stress-induced migration and its application to flow chromatography, Taylor dispersion, anomalous diffusion in flowing systems, the influence of the flow on chemical reactions, and polymer degradation. The new edition is not only broader in scope, but more educational in character, and with more emphasis on applications, in keeping with our times. It provides many examples of how a deeper theoretical understanding may bring new and more efficient applications, forging links between theoretical progress and practical aims. This updated version expands on the trusted content of its predecessor, making it more interesting and useful for a larger audience.


Lectures on Optimal Transport

Lectures on Optimal Transport
Author: Luigi Ambrosio
Publisher: Springer Nature
Total Pages: 250
Release: 2021-07-22
Genre: Mathematics
ISBN: 3030721620

Download Lectures on Optimal Transport Book in PDF, ePub and Kindle

This textbook is addressed to PhD or senior undergraduate students in mathematics, with interests in analysis, calculus of variations, probability and optimal transport. It originated from the teaching experience of the first author in the Scuola Normale Superiore, where a course on optimal transport and its applications has been given many times during the last 20 years. The topics and the tools were chosen at a sufficiently general and advanced level so that the student or scholar interested in a more specific theme would gain from the book the necessary background to explore it. After a large and detailed introduction to classical theory, more specific attention is devoted to applications to geometric and functional inequalities and to partial differential equations.


Modelling of Flow and Transport in Fractal Porous Media

Modelling of Flow and Transport in Fractal Porous Media
Author: Jianchao Cai
Publisher: Elsevier
Total Pages: 274
Release: 2020-11-05
Genre: Science
ISBN: 0128177985

Download Modelling of Flow and Transport in Fractal Porous Media Book in PDF, ePub and Kindle

This important resource explores recent theoretical advances and modelling on fluids transport in fractal porous systems and presents a systematic understanding of the characterization of complex microstructure and transport mechanism in fractal porous media. Modelling of Flow and Transport in Fractal Porous Media shows how fractal theory and technology, combined with other modern experiments and numerical simulation methods, will assist researchers and practitioners in modelling of transport properties of fractal porous media, such as fluid flow, heat and mass transfer, mechanical characteristics, and electrical conductivity. Presents the main methods and technologies for transport characterization of fractal porous media, including soils, reservoirs and artificial materials Provides the most recent theoretical advances in modelling of fractal porous media, including gas and vapor transport in fibrous materials, nonlinear seepage flow in hydrocarbon reservoirs, mass transfer of porous nanofibers, and fractal mechanics of unsaturated soils Includes multidisciplinary examples of applications of fractal theory to aid researchers and practitioners in characterizing various porous media structures


Topics in Optimal Transportation

Topics in Optimal Transportation
Author: Cédric Villani
Publisher: American Mathematical Soc.
Total Pages: 370
Release: 2021-08-25
Genre: Education
ISBN: 1470467267

Download Topics in Optimal Transportation Book in PDF, ePub and Kindle

This is the first comprehensive introduction to the theory of mass transportation with its many—and sometimes unexpected—applications. In a novel approach to the subject, the book both surveys the topic and includes a chapter of problems, making it a particularly useful graduate textbook. In 1781, Gaspard Monge defined the problem of “optimal transportation” (or the transferring of mass with the least possible amount of work), with applications to engineering in mind. In 1942, Leonid Kantorovich applied the newborn machinery of linear programming to Monge's problem, with applications to economics in mind. In 1987, Yann Brenier used optimal transportation to prove a new projection theorem on the set of measure preserving maps, with applications to fluid mechanics in mind. Each of these contributions marked the beginning of a whole mathematical theory, with many unexpected ramifications. Nowadays, the Monge-Kantorovich problem is used and studied by researchers from extremely diverse horizons, including probability theory, functional analysis, isoperimetry, partial differential equations, and even meteorology. Originating from a graduate course, the present volume is intended for graduate students and researchers, covering both theory and applications. Readers are only assumed to be familiar with the basics of measure theory and functional analysis.