Novel Low Voltage Power Mosfets With Improved Dc And Switching Characteristics PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Novel Low Voltage Power Mosfets With Improved Dc And Switching Characteristics PDF full book. Access full book title Novel Low Voltage Power Mosfets With Improved Dc And Switching Characteristics.

Low Voltage Power MOSFETs

Low Voltage Power MOSFETs
Author: Jacek Korec
Publisher: Springer Science & Business Media
Total Pages: 68
Release: 2011-03-30
Genre: Technology & Engineering
ISBN: 1441993207

Download Low Voltage Power MOSFETs Book in PDF, ePub and Kindle

Low Voltage Power MOSFETs focuses on the design of low voltage power MOSFETs and the relation between the device structure and the performance of a power MOSFET used as a switch in power management applications. This SpringerBriefs close the gap between detailed engineering reference books and the numerous technical papers on the subject of power MOSFETs. The material presented covers low voltage applications extending from battery operated portable electronics, through point of load converters, internet infrastructure, automotive applications, to personal computers and server computers. The issues treated in this volume are explained qualitatively using schematic illustrations, making the discussion easy to follow for all prospective readers.


Power MOSFETs with Enhanced Electrical Characteristics

Power MOSFETs with Enhanced Electrical Characteristics
Author: Hao Wang
Publisher:
Total Pages: 380
Release: 2009
Genre:
ISBN: 9780494677407

Download Power MOSFETs with Enhanced Electrical Characteristics Book in PDF, ePub and Kindle

The integration of high voltage power transistors with control circuitry to form smart Power Integrated Circuits (PIC) has numerous applications in the areas of industrial and consumer electronics. These smart PICs must rely on the availability of high performance power transistors. In this thesis, a vertical U-shaped gate MOSFET (UMOS) and a lateral Extended Drain MOSFET (EDMOS) with enhanced electrical characteristics are proposed, developed and verified via experimental fabrication. The proposed new process and structure offers superior performance, such as low on-resistance, low gate charge and optimized high breakdown voltage.In the vertical power UMOS, a novel trenched Local Oxidation of Silicon (LOCOS) process has been applied to the vertical gate structure to reduce the gate-to-source overlap capacitance (Cgs). A 40% reduction in Cgs is achieved when compared to conventional UMOS. A specific on-resistance Ron,sp = 60mO˙mm2 is observed, which is 45% better than that of the conventional UMOS. The improvement in the device's Figure-of-Merit (FOM = Ron x Qg) is about 58%.A floating RESURF EDMOS (BV=55V, Ron,sp=36.5mO˙mm 2) with a 400% improvement in the Safe Operating Area (SOA) when compared to the conventional EDMOS structure is also presented. The proposed EDMOS employs both drain and source engineering to enhance SOA, not only via reducing the base resistance of the parasitic bipolar transistor, but also suppressing the base current of the parasitic bipolar transistor under high Vgs and high Vds conditions. A buried deep Nwell allows the device to have better trade-off between breakdown voltage and on-resistance.Finally, in order to achieve low gate charge in the EDMOS, a novel orthogonal gate electrode is proposed to reduce the gate-to-drain overlap capacitance (Cgd). The orthogonal gate has both horizontal and vertical sections for gate control. This device is implemented in a 0.18mum 30V HV-CMOS process. Compared to a conventional EDMOS with the same voltage and size, a 75% C gd reduction is observed. The FOM is improved by 53%.


Advanced Power MOSFET Concepts

Advanced Power MOSFET Concepts
Author: B. Jayant Baliga
Publisher: Springer Science & Business Media
Total Pages: 573
Release: 2010-06-26
Genre: Technology & Engineering
ISBN: 1441959173

Download Advanced Power MOSFET Concepts Book in PDF, ePub and Kindle

During the last decade many new concepts have been proposed for improving the performance of power MOSFETs. The results of this research are dispersed in the technical literature among journal articles and abstracts of conferences. Consequently, the information is not readily available to researchers and practicing engineers in the power device community. There is no cohesive treatment of the ideas to provide an assessment of the relative merits of the ideas. "Advanced Power MOSFET Concepts" provides an in-depth treatment of the physics of operation of advanced power MOSFETs. Analytical models for explaining the operation of all the advanced power MOSFETs will be developed. The results of numerical simulations will be provided to give additional insight into the device physics and validate the analytical models. The results of two-dimensional simulations will be provided to corroborate the analytical models and give greater insight into the device operation.


Multi-voltage CMOS Circuit Design

Multi-voltage CMOS Circuit Design
Author: Volkan Kursun
Publisher: John Wiley & Sons
Total Pages: 242
Release: 2006-08-30
Genre: Technology & Engineering
ISBN: 047001024X

Download Multi-voltage CMOS Circuit Design Book in PDF, ePub and Kindle

This book presents an in-depth treatment of various power reduction and speed enhancement techniques based on multiple supply and threshold voltages. A detailed discussion of the sources of power consumption in CMOS circuits will be provided whilst focusing primarily on identifying the mechanisms by which sub-threshold and gate oxide leakage currents are generated. The authors present a comprehensive review of state-of-the-art dynamic, static supply and threshold voltage scaling techniques and discuss the pros and cons of supply and threshold voltage scaling techniques.


Design and Process Developments Towards an Optimal 6.5 KV SiC Power MOSFET.

Design and Process Developments Towards an Optimal 6.5 KV SiC Power MOSFET.
Author: Victor Soler
Publisher:
Total Pages: 250
Release: 2020
Genre:
ISBN:

Download Design and Process Developments Towards an Optimal 6.5 KV SiC Power MOSFET. Book in PDF, ePub and Kindle

A sustainable future requires efficient power electronic converters at any stage of the electrical energy consumption. Silicon carbide (SiC) is one of the most technologically advanced wide bandgap semiconductors that can outperform silicon limits for power devices. SiC power MOSFETs are of the greatest interest since they are unipolar gate-controlled switches with high blocking voltage capability and reasonably low specific on-resistance. The focus of this thesis is on the design optimisation and process technology refinement towards the improvement of high-voltage SiC MOSFETs. Previous developments in our group were taken as a reference for this work. The results of this research allowed the fabrication of large-area SiC power MOSFETs with voltage ranges targeting 1.7 kV up to 6.5 kV.The inherent properties of SiC entail challenging technological solutions to successfully integrate a power MOSFET of such high-voltage capability. To ensure suitable blocking capability, different planar edge termination structures have been designed, optimised by TCAD simulation and implemented on PiN diodes. The termination schemes considered are single-zone JTE, FGRs and a novel RA-JTE structure combining JTE with rings. RA-JTE design, with the lowest sensitivity to fabrication process deviations and a lower consumed area, achieved more than 90% of the ideal breakdown voltage and suitable blocking capability up to 6.5 kV.The optimisations performed on the unit-cell of the SiC power MOSFET target both the layout design and the fabrication process. The optimisation has been performed by TCAD modelling and experimental evaluation of specific test structures. Several techniques to improve the performance of the fabricated devices have been considered: i) the use of an offset retrograde p-body profile to provide an adequate Vth value while preventing p-body punch-through, ii) a submicronic self-aligned channel definition, iii) a boron treatment to the gate oxide to improve channel mobility, iv) a discrete location of the p-contact to reduce cell-pitch, v) the use of a lower-doped-source (LDS) to improve reliability, vi) the optimisation of the JFET area, and vii) the integration of gate runners to improve the switching performance. As a result of these investigations, a full mask-set were designed and used for processing wafers of several voltage-class in different batches. All the fabrication steps have been carried out at IMB-CNM cleanroom. The electrical characterisation of large-area devices has evidenced an optimal Vth in the range of 5 V, a proper gate control, and a good blocking capability. We obtained relatively high specific on-resistance due to the large cell pitch dimensions required by IMB-CNM cleanroom design rules as well as a still low channel mobility. Fabricated SiC MOSFETs are capable of switching at high bus voltages (tested up to 80% of the rated voltage). Although, their switching performance is limited by internal gate resistance. Fabricated devices have shown better short-circuit capability (>15 μs) than existing commercial devices, mainly due to the cell design considerations.The evaluation of electrical performance evidenced the successful functionality of the fabricated VDMOS up to 6.5 kV and validates our new RA-JTE termination design. On the other hand, the novel boron doping treatment to the gate oxide clearly demonstrated to improve the on-resistance of our devices in all voltage classes without affecting breakdown and short-circuit capabilities. Nevertheless, it strongly compromises stability and reliability at temperatures above 100 °C. These results show that the MOS interface quality is still the major issue for the development of reliable SiC power MOSFETs.Finally, alternative SiC structures have also been investigated to take advantage of the SiC superior material properties. These include a SiC IGBT showing conductivity modulation, and a preliminary SiC CMOS cell able to operate at high temperatures.