Nonlinear Fluid Structure Interaction Of Floating Bodies PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonlinear Fluid Structure Interaction Of Floating Bodies PDF full book. Access full book title Nonlinear Fluid Structure Interaction Of Floating Bodies.

IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering

IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering
Author: Edwin Kreuzer
Publisher: Springer Science & Business Media
Total Pages: 347
Release: 2008-06-28
Genre: Technology & Engineering
ISBN: 140208630X

Download IUTAM Symposium on Fluid-Structure Interaction in Ocean Engineering Book in PDF, ePub and Kindle

Proceedings of the IUTAM Symposium on Fluid- Structure Interaction in Ocean Engineering, held in Hamburg, July 23-26, 2007. The study of gravity driven water waves interacting with fixed or freely floating objects is an active and important field of research in ocean engineering. The accurate prediction of large amplitude ship motions or of marine structures in severe seas is still a delicate problem in the field of fluid-structure interaction. While three-dimensional panel methods have reached the state of maturity in linear sea-keeping analysis, the original problem, governed by strongly nonlinear boundary conditions, is far from being solved efficiently. The principal nonlinearities are associated with the variable wetted surface of the ship hull or the floating body and with the nonlinear hydrodynamic conditions on the free surface. Moreover, marine structures often must be modelled as multibody systems rather than a single body. This causes additional problems due to wave slamming on floating and fixed structures. Furthermore, problems such as coupled structural behavior of submerged or floating systems as well as various wind effects have to be considered for the proper design of offshore systems. This book collects contributions from leading scientists working on the following topics: Ocean waves, probabilistic models of sea waves, fluid-loading on structures including pipes, cables, drill-strings etc., behavior of floating systems, stability and capsizing of ships, coupled structural behavior, sloshing in tanks, CFD validation and verification.


Fundamental Trends in Fluid-structure Interaction

Fundamental Trends in Fluid-structure Interaction
Author: Giovanni Paolo Galdi
Publisher: World Scientific
Total Pages: 302
Release: 2010
Genre: Science
ISBN: 9814299324

Download Fundamental Trends in Fluid-structure Interaction Book in PDF, ePub and Kindle

The interaction of a fluid with a solid body is a widespread phenomenon in nature, occurring at different scales and different applied disciplines. Interestingly enough, even though the mathematical theory of the motion of bodies in a liquid is one of the oldest and most classical problems in fluid mechanics, mathematicians have, only very recently, become interested in a systematic study of the basic problems related to fluid-structure interaction, from both analytical and numerical viewpoints. Fundamental Trends in Fluid-Structure Interaction is a unique collection of important papers written by world-renowned experts aimed at furnishing the highest level of development in several significant areas of fluid-structure interactions. The contributions cover several aspects of this discipline, from mathematical analysis, numerical simulation and modeling viewpoints, including motion of rigid and elastic bodies in a viscous liquid, particulate flow and hemodynamic.


Fluid-Structure Interactions: Volume 2

Fluid-Structure Interactions: Volume 2
Author: Michael P. Paidoussis
Publisher: Elsevier
Total Pages: 944
Release: 2016-02-05
Genre: Science
ISBN: 0123973341

Download Fluid-Structure Interactions: Volume 2 Book in PDF, ePub and Kindle

The second of two volumes concentrating on the dynamics of slender bodies within or containing axial flow, Volume 2 covers fluid-structure interactions relating to shells, cylinders and plates containing or immersed in axial flow, as well as slender structures subjected to annular and leakage flows. This volume has been thoroughly updated to reference the latest developments in the field, with a continued emphasis on the understanding of dynamical behaviour and analytical methods needed to provide long-term solutions and validate the latest computational methods and codes, with increased coverage of computational techniques and numerical methods, particularly for the solution of non-linear three-dimensional problems. Provides an in-depth review of an extensive range of fluid-structure interaction topics, with detailed real-world examples and thorough referencing throughout for additional detail Organized by structure and problem type, allowing you to dip into the sections that are relevant to the particular problem you are facing, with numerous appendices containing the equations relevant to specific problems Supports development of long-term solutions by focusing on the fundamentals and mechanisms needed to understand underlying causes and operating conditions under which apparent solutions might not prove effective


Nonlinear Waves And Offshore Structures

Nonlinear Waves And Offshore Structures
Author: Cheung Hun Kim
Publisher: World Scientific Publishing Company
Total Pages: 540
Release: 2008-05-02
Genre: Technology & Engineering
ISBN: 9813102489

Download Nonlinear Waves And Offshore Structures Book in PDF, ePub and Kindle

The responses of offshore structures are significantly affected by steep nonlinear waves, currents and wind, leading to phenomena such as springing and ringing of TLPs, slow drift yaw motion of FPSOs and large oscillations of Spar platforms due to vortex shedding. Research has brought about significant progress in this field over the past few decades and introduced us to increasingly involved concepts and their diverse applicability. Thus, an in-depth understanding of steep nonlinear waves and their effects on the responses of offshore structures is essential for safe and effective designs.This book deals with analyses of nonlinear problems encountered in the design of offshore structures, as well as those that are of immediate practical interest to ocean engineers and designers. It presents conclusions drawn from recent research pertinent to nonlinear waves and their effects on the responses of offshore structures. Theories, observations and analyses of laboratory and field experiments are expounded such that the nonlinear effects can be clearly visualized.


Fluid-structure Interaction

Fluid-structure Interaction
Author: Alain Dervieux
Publisher: Elsevier Science & Technology
Total Pages: 248
Release: 2003
Genre: Science
ISBN:

Download Fluid-structure Interaction Book in PDF, ePub and Kindle

This primarily theoretical study of mathematical and numerical models for fluid-structure interaction concerns systems involving fluid and structure that have mechanical influence on each other, with particular focus on unsteady aeroelasticity.


Compressible-incompressible Transitions in Fluid Mechanics

Compressible-incompressible Transitions in Fluid Mechanics
Author: Edoardo Bocchi
Publisher:
Total Pages: 0
Release: 2019
Genre:
ISBN:

Download Compressible-incompressible Transitions in Fluid Mechanics Book in PDF, ePub and Kindle

This manuscript deals with compressible-incompressible transitions arising in partial differential equations of fluid mechanics. We investigate two problems: floating structures and rotating fluids. In the first problem, the introduction of a floating object into water waves enforces a constraint on the fluid and the governing equations turn out to have a compressible-incompressible structure. In the second problem, the motion of geophysical compressible fluids is affected by the Earth's rotation and the study of the high rotation limit shows that the velocity vector field tends to be horizontal and with an incompressibility constraint.Floating structures are a particular example of fluid-structure interaction, in which a partially immersed solid is floating at the fluid surface. This mathematical problem models the motion of wave energy converters in sea water. In particular, we focus on heaving buoys, usually implemented in the near-shore zone, where the shallow water asymptotic models describe accurately the motion of waves. We study the two-dimensional nonlinear shallow water equations in the axisymmetric configuration in the presence of a floating object with vertical side-walls moving only vertically. The assumptions on the solid permit to avoid the free boundary problem associated with the moving contact line between the air, the water and the solid. Hence, in the domain exterior to the solid the fluid equations can be written as an hyperbolic quasilinear initial boundary value problem. This couples with a nonlinear second order ODE derived from Newton's law for the free solid motion. Local in time well-posedness of the coupled system is shown provided some compatibility conditions are satisfied by the initial data in order to generate smooth solutions.Afterwards, we address a particular configuration of this fluid-structure interaction: the return to equilibrium. It consists in releasing a partially immersed solid body into a fluid initially at rest and letting it evolve towards its equilibrium position. A different hydrodynamical model is used. In the exterior domain the equations are linearized but the nonlinear effects are taken into account under the solid. The equation for the solid motion becomes a nonlinear second order integro-differential equation which rigorously justifies the Cummins equation, assumed by engineers to govern the motion of floating objects. Moreover, the equation derived improves the linear approach of Cummins by taking into account the nonlinear effects. The global existence and uniqueness of the solution is shown for small data using the conservation of the energy of the fluid-structure system.In the second part of the manuscript, highly rotating fluids are studied. This mathematical problem models the motion of geophysical flows at large scales affected by the Earth's rotation, such as massive oceanic and atmospheric currents. The motion is also influenced by the gravity, which causes a stratification of the density in compressible fluids. The rotation generates anisotropy in viscous flows and the vertical turbulent viscosity tends to zero in the high rotation limit. Our interest lies in this singular limit problem taking into account gravitational and compressible effects. We study the compressible anisotropic Navier-Stokes-Coriolis equations with gravitational force in the horizontal infinite slab with no-slip boundary condition. Both this condition and the Coriolis force cause the apparition of Ekman layers near the boundary. They are taken into account in the analysis by adding corrector terms which decay in the interior of the domain. In this work well-prepared initial data are considered. A stability result of global weak solutions is shown for power-type pressure laws. The limit dynamics is described by a two-dimensional viscous quasi-geostrophic equation with a damping term that accounts for the boundary layers.


Fluid-Solid Interaction Dynamics

Fluid-Solid Interaction Dynamics
Author: Jing Tang Xing
Publisher: Academic Press
Total Pages: 680
Release: 2019-08-30
Genre: Science
ISBN: 0128193530

Download Fluid-Solid Interaction Dynamics Book in PDF, ePub and Kindle

Fluid-Solid Interaction Dynamics: Theory, Variational Principles, Numerical Methods and Applications gives a comprehensive accounting of fluid-solid interaction dynamics, including theory, numerical methods and their solutions for various FSI problems in engineering. The title provides the fundamental theories, methodologies and results developed in the application of FSI dynamics. Four numerical approaches that can be used with almost all integrated FSI systems in engineering are presented. Methods are linked with examples to illustrate results. In addition, numerical results are compared with available experiments or numerical data in order to demonstrate the accuracy of the approaches and their value to engineering applications. The title gives readers the state-of-the-art in theory, variational principles, numerical modeling and applications for fluid-solid interaction dynamics. Readers will be able to independently formulate models to solve their engineering FSI problems using information from this book. Presents the state-of-the-art in fluid-solid interaction dynamics, providing theory, method and results Takes an integrated approach to formulate, model and simulate FSI problems in engineering Illustrates results with concrete examples Gives four numerical approaches and related theories that are suitable for almost all integrated FSI systems Provides the necessary information for bench scientists to independently formulate, model, and solve physical FSI problems in engineering


Fluid-Structure Interactions

Fluid-Structure Interactions
Author: Michael P. Paidoussis
Publisher: Academic Press
Total Pages: 589
Release: 1998-10-12
Genre: Technology & Engineering
ISBN: 008053175X

Download Fluid-Structure Interactions Book in PDF, ePub and Kindle

This volume emphasizes the fundamentals and mechanisms giving rise to flow-induced vibration of use to researchers, designers, and operators. Fluid Structure Interactions provides useful problem-solving tools, and conveys the ideas in a physically comprehensible manner. The book includes a complete bibliography of important work in the field. . The Non-linear behaviour of Fluid-Structure interactions . The possible existence of chaotic oscillations . The use of this area as a model to demonstrate new mathematical techniques This book will prove invaluable to researchers, practitioners, and students in fluid-structure interactions, flow-induced vibrations, and dynamics and vibrations.