Nonlinear Analysis In Neuroscience And Behavioral Research PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Nonlinear Analysis In Neuroscience And Behavioral Research PDF full book. Access full book title Nonlinear Analysis In Neuroscience And Behavioral Research.

Nonlinear Analysis in Neuroscience and Behavioral Research

Nonlinear Analysis in Neuroscience and Behavioral Research
Author: Tobias A. Mattei
Publisher: Frontiers Media SA
Total Pages: 273
Release: 2016-10-31
Genre: Neurosciences. Biological psychiatry. Neuropsychiatry
ISBN: 2889199967

Download Nonlinear Analysis in Neuroscience and Behavioral Research Book in PDF, ePub and Kindle

Although nonlinear dynamics have been mastered by physicists and mathematicians for a long time (as most physical systems are inherently nonlinear in nature), the recent successful application of nonlinear methods to modeling and predicting several evolutionary, ecological, physiological, and biochemical processes has generated great interest and enthusiasm among researchers in computational neuroscience and cognitive psychology. Additionally, in the last years it has been demonstrated that nonlinear analysis can be successfully used to model not only basic cellular and molecular data but also complex cognitive processes and behavioral interactions. The theoretical features of nonlinear systems (such unstable periodic orbits, period-doubling bifurcations and phase space dynamics) have already been successfully applied by several research groups to analyze the behavior of a variety of neuronal and cognitive processes. Additionally the concept of strange attractors has lead to a new understanding of information processing which considers higher cognitive functions (such as language, attention, memory and decision making) as complex systems emerging from the dynamic interaction between parallel streams of information flowing between highly interconnected neuronal clusters organized in a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm of self-organization derived from the nonlinear dynamics theory has offered an interesting account of the phenomenon of emergence of new complex cognitive structures from random and non-deterministic patterns, similarly to what has been previously observed in nonlinear studies of fluid dynamics. Finally, the challenges of coupling massive amount of data related to brain function generated from new research fields in experimental neuroscience (such as magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal activity) have generated the necessity of new research strategies which incorporate complex pattern analysis as an important feature of their algorithms. Up to now nonlinear dynamics has already been successfully employed to model both basic single and multiple neurons activity (such as single-cell firing patterns, neural networks synchronization, autonomic activity, electroencephalographic measurements, and noise modulation in the cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly, previous experimental studies have suggested that several cognitive functions can be successfully modeled with basis on the transient activity of large-scale brain networks in the presence of noise. Such studies have demonstrated that it is possible to represent typical decision-making paradigms of neuroeconomics by dynamic models governed by ordinary differential equations with a finite number of possibilities at the decision points and basic heuristic rules which incorporate variable degrees of uncertainty. This e-book has include frontline research in computational neuroscience and cognitive psychology involving applications of nonlinear analysis, especially regarding the representation and modeling of complex neural and cognitive systems. Several experts teams around the world have provided frontline theoretical and experimental contributions (as well as reviews, perspectives and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination. Rather than a comprehensive compilation of the possible topics in neuroscience and cognitive research to which non-linear may be used, this e-book intends to provide some illustrative examples of the broad range of


Application of Nonlinear Analysis to the Study of Complex Systems in Neuroscience and Behavioral Research

Application of Nonlinear Analysis to the Study of Complex Systems in Neuroscience and Behavioral Research
Author:
Publisher:
Total Pages: 0
Release: 2016
Genre:
ISBN:

Download Application of Nonlinear Analysis to the Study of Complex Systems in Neuroscience and Behavioral Research Book in PDF, ePub and Kindle

Although nonlinear dynamics have been mastered by physicists and mathematicians for a long time (as most physical systems are inherently nonlinear in nature), the recent successful application of nonlinear methods to modeling and predicting several evolutionary, ecological, physiological, and biochemical processes has generated great interest and enthusiasm among researchers in computational neuroscience and cognitive psychology. Additionally, in the last years it has been demonstrated that nonlinear analysis can be successfully used to model not only basic cellular and molecular data but also complex cognitive processes and behavioral interactions. The theoretical features of nonlinear systems (such unstable periodic orbits, period-doubling bifurcations and phase space dynamics) have already been successfully applied by several research groups to analyze the behavior of a variety of neuronal and cognitive processes. Additionally the concept of strange attractors has lead to a new understanding of information processing which considers higher cognitive functions (such as language, attention, memory and decision making) as complex systems emerging from the dynamic interaction between parallel streams of information flowing between highly interconnected neuronal clusters organized in a widely distributed circuit and modulated by key central nodes. Furthermore, the paradigm of self-organization derived from the nonlinear dynamics theory has offered an interesting account of the phenomenon of emergence of new complex cognitive structures from random and non-deterministic patterns, similarly to what has been previously observed in nonlinear studies of fluid dynamics. Finally, the challenges of coupling massive amount of data related to brain function generated from new research fields in experimental neuroscience (such as magnetoencephalography, optogenetics and single-cell intra-operative recordings of neuronal activity) have generated the necessity of new research strategies which incorporate complex pattern analysis as an important feature of their algorithms. Up to now nonlinear dynamics has already been successfully employed to model both basic single and multiple neurons activity (such as single-cell firing patterns, neural networks synchronization, autonomic activity, electroencephalographic measurements, and noise modulation in the cerebellum), as well as higher cognitive functions and complex psychiatric disorders. Similarly, previous experimental studies have suggested that several cognitive functions can be successfully modeled with basis on the transient activity of large-scale brain networks in the presence of noise. Such studies have demonstrated that it is possible to represent typical decision-making paradigms of neuroeconomics by dynamic models governed by ordinary differential equations with a finite number of possibilities at the decision points and basic heuristic rules which incorporate variable degrees of uncertainty. This e-book has include frontline research in computational neuroscience and cognitive psychology involving applications of nonlinear analysis, especially regarding the representation and modeling of complex neural and cognitive systems. Several experts teams around the world have provided frontline theoretical and experimental contributions (as well as reviews, perspectives and commentaries) in the fields of nonlinear modeling of cognitive systems, chaotic dynamics in computational neuroscience, fractal analysis of biological brain data, nonlinear dynamics in neural networks research, nonlinear and fuzzy logics in complex neural systems, nonlinear analysis of psychiatric disorders and dynamic modeling of sensorimotor coordination.


Nonlinear Dynamics in Computational Neuroscience

Nonlinear Dynamics in Computational Neuroscience
Author: Fernando Corinto
Publisher: Springer
Total Pages: 141
Release: 2018-06-19
Genre: Technology & Engineering
ISBN: 3319710486

Download Nonlinear Dynamics in Computational Neuroscience Book in PDF, ePub and Kindle

This book provides an essential overview of computational neuroscience. It addresses a broad range of aspects, from physiology to nonlinear dynamical approaches to understanding neural computation, and from the simulation of brain circuits to the development of engineering devices and platforms for neuromorphic computation. Written by leading experts in such diverse fields as neuroscience, physics, psychology, neural engineering, cognitive science and applied mathematics, the book reflects the remarkable advances that have been made in the field of computational neuroscience, an emerging discipline devoted to the study of brain functions in terms of the information-processing properties of the structures forming the nervous system. The contents build on the workshop “Nonlinear Dynamics in Computational Neuroscience: from Physics and Biology to ICT,” which was held in Torino, Italy in September 2015.


Multiscale Analysis and Nonlinear Dynamics

Multiscale Analysis and Nonlinear Dynamics
Author: Misha Meyer Pesenson
Publisher: John Wiley & Sons
Total Pages: 307
Release: 2013-09-13
Genre: Science
ISBN: 352767165X

Download Multiscale Analysis and Nonlinear Dynamics Book in PDF, ePub and Kindle

Since modeling multiscale phenomena in systems biology and neuroscience is a highly interdisciplinary task, the editor of the book invited experts in bio-engineering, chemistry, cardiology, neuroscience, computer science, and applied mathematics, to provide their perspectives. Each chapter is a window into the current state of the art in the areas of research discussed and the book is intended for advanced researchers interested in recent developments in these fields. While multiscale analysis is the major integrating theme of the book, its subtitle does not call for bridging the scales from genes to behavior, but rather stresses the unifying perspective offered by the concepts referred to in the title. It is believed that the interdisciplinary approach adopted here will be beneficial for all the above mentioned fields.


Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data

Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data
Author: Stephen J. Guastello
Publisher: CRC Press
Total Pages: 616
Release: 2016-04-19
Genre: Mathematics
ISBN: 1439820023

Download Nonlinear Dynamical Systems Analysis for the Behavioral Sciences Using Real Data Book in PDF, ePub and Kindle

Although its roots can be traced to the 19th century, progress in the study of nonlinear dynamical systems has taken off in the last 30 years. While pertinent source material exists, it is strewn about the literature in mathematics, physics, biology, economics, and psychology at varying levels of accessibility. A compendium research methods reflect


Nonlinear Brain Dynamics

Nonlinear Brain Dynamics
Author: Cornelis J. Stam
Publisher: Nova Publishers
Total Pages: 166
Release: 2006
Genre: Brain
ISBN: 9781594548796

Download Nonlinear Brain Dynamics Book in PDF, ePub and Kindle

At the beginning of the 21st century, understanding the brain has become one of the final frontiers of science. Hailed as the 'most complex object in the universe' the brain still defies a complete understanding of its workings, in particular in relation to consciousness and higher brain functions. Despite enormous scientific efforts, the question how the 'mere matter' of 1011 interacting nerve cells can give rise to the inner world of our subjective feelings still remains an enigma. However, in contrast to a few decades ago, when respectable neuroscience was not expected to deal with such questions, the search for brain/mind relationships has now become the focus of intense research. The central idea of this book: to understand the brain, we need to understand its dynamics.


Time Series Modeling of Neuroscience Data

Time Series Modeling of Neuroscience Data
Author: Tohru Ozaki
Publisher: CRC Press
Total Pages: 561
Release: 2012-01-26
Genre: Mathematics
ISBN: 1420094610

Download Time Series Modeling of Neuroscience Data Book in PDF, ePub and Kindle

Recent advances in brain science measurement technology have given researchers access to very large-scale time series data such as EEG/MEG data (20 to 100 dimensional) and fMRI (140,000 dimensional) data. To analyze such massive data, efficient computational and statistical methods are required.Time Series Modeling of Neuroscience Data shows how to


Nonlinear Analysis Research Trends

Nonlinear Analysis Research Trends
Author: Inès N. Roux
Publisher:
Total Pages: 0
Release: 2009
Genre: Mathematical analysis
ISBN: 9781604563580

Download Nonlinear Analysis Research Trends Book in PDF, ePub and Kindle

Non-linear analysis is a broad, interdisciplinary field characterised by a mixture of analysis, topology, and applications. Its concepts and techniques provide the tools for developing more realistic and accurate models for a variety of phenomena encountered in fields ranging from engineering and chemistry to economics and biology. This book presents the latest research from around the globe.


Dynamical Systems in Neuroscience

Dynamical Systems in Neuroscience
Author: Eugene M. Izhikevich
Publisher: MIT Press
Total Pages: 522
Release: 2007
Genre: Differentiable dynamical systems
ISBN: 0262090430

Download Dynamical Systems in Neuroscience Book in PDF, ePub and Kindle

In order to model neuronal behavior or to interpret the results of modeling studies, neuroscientists must call upon methods of nonlinear dynamics. This book offers an introduction to nonlinear dynamical systems theory for researchers and graduate students in neuroscience. It also provides an overview of neuroscience for mathematicians who want to learn the basic facts of electrophysiology. Dynamical Systems in Neuroscience presents a systematic study of the relationship of electrophysiology, nonlinear dynamics, and computational properties of neurons. It emphasizes that information processing in the brain depends not only on the electrophysiological properties of neurons but also on their dynamical properties. The book introduces dynamical systems, starting with one- and two-dimensional Hodgkin-Huxley-type models and continuing to a description of bursting systems. Each chapter proceeds from the simple to the complex, and provides sample problems at the end. The book explains all necessary mathematical concepts using geometrical intuition; it includes many figures and few equations, making it especially suitable for non-mathematicians. Each concept is presented in terms of both neuroscience and mathematics, providing a link between the two disciplines. Nonlinear dynamical systems theory is at the core of computational neuroscience research, but it is not a standard part of the graduate neuroscience curriculum—or taught by math or physics department in a way that is suitable for students of biology. This book offers neuroscience students and researchers a comprehensive account of concepts and methods increasingly used in computational neuroscience. An additional chapter on synchronization, with more advanced material, can be found at the author's website, www.izhikevich.com.


Nonlinear Analysis of Physiological Data

Nonlinear Analysis of Physiological Data
Author: Holger Kantz
Publisher: Springer
Total Pages: 0
Release: 2011-12-21
Genre: Science
ISBN: 9783642719516

Download Nonlinear Analysis of Physiological Data Book in PDF, ePub and Kindle

This book is more than a standard proceedings volume, although it is an almost direct result of the workshop on "Nonlinear Analysis of Physiologi cal Time Series" held in Freital near Dresden, Germany, in October 1995. The idea of the meeting was, as for previous meetings devoted to related topics, such as the conference on dynamical diseases held near Montreal in February 1994 (see CHAOS Vol. 5(1), 1995), to bring together experts on the techniques of nonlinear analysis and the theory of chaos and applicants from the most fascinating field where such methods could potentially be useful: the life sciences. The former group consisted mainly of physicists and mathe maticians, the latter was represented by physiologists and medical researchers and practitioners. Many aspects of this workshop were unusual and not previously expe rienced. Also, the hosting institution, the Max Planck Institute for Physics of Complex Systems (MPIPKS), at this time was brand new. The organiz ers' rather unconventional intention was to bring specialists of both groups together to really work together. Therefore, there was an excessive availabil ity of computers and the possibility to numerically study time series data sets practitioners had supplied from their own fields, e. g. electrocardiogram (ECG) data, electroencephalogram (EEG) data, data from the respiratory system, from human voice, human posture control, and several others. These data formed a much stronger link between theoreticians and applicants than any of the common ideas.