Multiscale Characterization Of Biological Systems PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiscale Characterization Of Biological Systems PDF full book. Access full book title Multiscale Characterization Of Biological Systems.

Multiscale Characterization of Biological Systems

Multiscale Characterization of Biological Systems
Author: Vikas Tomar
Publisher: Springer
Total Pages: 103
Release: 2015-11-30
Genre: Medical
ISBN: 1493934538

Download Multiscale Characterization of Biological Systems Book in PDF, ePub and Kindle

This book covers the latest research work done in the area of interface mechanics of collagen and chitin-based biomaterials along with various techniques that can be used to understand mechanics of biological systems and materials. Topics covered include Raman spectroscopy of biological systems, scale dependence of the mechanical properties and microstructure of crustaceans thin films as biomimetic materials, as well as the role of molecular-level modeling. The use of nanomechanics to investigate interface thermomechanics of collagen and chitin-based biomaterials is also covered in detail. This book also: • Details spectroscope experiments as well as nanomechanic experiments • Reviews exhaustively phenomenological models and Raman spectroscopy of biological systems • Covers the latest in multiscaling for molecular models to predict lab-scale sample properties and investigates interface thermomechanics


Multiscale Analysis and Nonlinear Dynamics

Multiscale Analysis and Nonlinear Dynamics
Author: Misha Meyer Pesenson
Publisher: John Wiley & Sons
Total Pages: 307
Release: 2013-09-13
Genre: Science
ISBN: 352767165X

Download Multiscale Analysis and Nonlinear Dynamics Book in PDF, ePub and Kindle

Since modeling multiscale phenomena in systems biology and neuroscience is a highly interdisciplinary task, the editor of the book invited experts in bio-engineering, chemistry, cardiology, neuroscience, computer science, and applied mathematics, to provide their perspectives. Each chapter is a window into the current state of the art in the areas of research discussed and the book is intended for advanced researchers interested in recent developments in these fields. While multiscale analysis is the major integrating theme of the book, its subtitle does not call for bridging the scales from genes to behavior, but rather stresses the unifying perspective offered by the concepts referred to in the title. It is believed that the interdisciplinary approach adopted here will be beneficial for all the above mentioned fields.


Multiscale Modelling in Biomedical Engineering

Multiscale Modelling in Biomedical Engineering
Author: Dimitrios I. Fotiadis
Publisher: John Wiley & Sons
Total Pages: 404
Release: 2023-06-07
Genre: Science
ISBN: 1119517346

Download Multiscale Modelling in Biomedical Engineering Book in PDF, ePub and Kindle

Multiscale Modelling in Biomedical Engineering Discover how multiscale modeling can enhance patient treatment and outcomes In Multiscale Modelling in Biomedical Engineering, an accomplished team of biomedical professionals delivers a robust treatment of the foundation and background of a general computational methodology for multi-scale modeling. The authors demonstrate how this methodology can be applied to various fields of biomedicine, with a particular focus on orthopedics and cardiovascular medicine. The book begins with a description of the relationship between multiscale modeling and systems biology before moving on to proceed systematically upwards in hierarchical levels from the molecular to the cellular, tissue, and organ level. It then examines multiscale modeling applications in specific functional areas, like mechanotransduction, musculoskeletal, and cardiovascular systems. Multiscale Modelling in Biomedical Engineering offers readers experiments and exercises to illustrate and implement the concepts contained within. Readers will also benefit from the inclusion of: A thorough introduction to systems biology and multi-scale modeling, including a survey of various multi-scale methods and approaches and analyses of their application in systems biology Comprehensive explorations of biomedical imaging and nanoscale modeling at the molecular, cell, tissue, and organ levels Practical discussions of the mechanotransduction perspective, including recent progress and likely future challenges In-depth examinations of risk prediction in patients using big data analytics and data mining Perfect for undergraduate and graduate students of bioengineering, biomechanics, biomedical engineering, and medicine, Multiscale Modelling in Biomedical Engineering will also earn a place in the libraries of industry professional and researchers seeking a one-stop reference to the basic engineering principles of biological systems.


Understanding the Dynamics of Biological Systems

Understanding the Dynamics of Biological Systems
Author: Werner Dubitzky
Publisher: Springer Science & Business Media
Total Pages: 249
Release: 2011-01-07
Genre: Science
ISBN: 1441979646

Download Understanding the Dynamics of Biological Systems Book in PDF, ePub and Kindle

This book is intended as a communication platform to bridge the cultural, conceptual, and technological gap among the key systems biology disciplines of biology, mathematics, and information technology. To support this goal, contributors were asked to adopts an approach that appeals to audiences from different backgrounds.


Materiomics: Multiscale Mechanics of Biological Materials and Structures

Materiomics: Multiscale Mechanics of Biological Materials and Structures
Author: Markus J. Buehler
Publisher: Springer Science & Business Media
Total Pages: 152
Release: 2013-11-18
Genre: Technology & Engineering
ISBN: 3709115744

Download Materiomics: Multiscale Mechanics of Biological Materials and Structures Book in PDF, ePub and Kindle

Multiscale mechanics of hierarchical materials plays a crucial role in understanding and engineering biological and bioinspired materials and systems. The mechanical science of hierarchical tissues and cells in biological systems has recently emerged as an exciting area of research and provides enormous opportunities for innovative basic research and technological advancement. Such advances could enable us to provide engineered materials and structure with properties that resemble those of biological systems, in particular the ability to self-assemble, to self-repair, to adapt and evolve, and to provide multiple functions that can be controlled through external cues. This book presents material from leading researchers in the field of mechanical sciences of biological materials and structure, with the aim to introduce methods and applications to a wider range of engineers.


Systems Biology

Systems Biology
Author: Aleš Prokop
Publisher: Springer Science & Business Media
Total Pages: 569
Release: 2013-08-28
Genre: Medical
ISBN: 9400768036

Download Systems Biology Book in PDF, ePub and Kindle

Growth in the pharmaceutical market has slowed down – almost to a standstill. One reason is that governments and other payers are cutting costs in a faltering world economy. But a more fundamental problem is the failure of major companies to discover, develop and market new drugs. Major drugs losing patent protection or being withdrawn from the market are simply not being replaced by new therapies – the pharmaceutical market model is no longer functioning effectively and most pharmaceutical companies are failing to produce the innovation needed for success. This multi-authored new book looks at a vital strategy which can bring innovation to a market in need of new ideas and new products: Systems Biology (SB). Modeling is a significant task of systems biology. SB aims to develop and use efficient algorithms, data structures, visualization and communication tools to orchestrate the integration of large quantities of biological data with the goal of computer modeling. It involves the use of computer simulations of biological systems, such as the networks of metabolites comprise signal transduction pathways and gene regulatory networks to both analyze and visualize the complex connections of these cellular processes. SB involves a series of operational protocols used for performing research, namely a cycle composed of theoretical, analytic or computational modeling to propose specific testable hypotheses about a biological system, experimental validation, and then using the newly acquired quantitative description of cells or cell processes to refine the computational model or theory.


Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Prokaryotic and Eukaryotic Systems

Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Prokaryotic and Eukaryotic Systems
Author:
Publisher: Academic Press
Total Pages: 360
Release: 2020-05-14
Genre: Science
ISBN: 0128201487

Download Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Prokaryotic and Eukaryotic Systems Book in PDF, ePub and Kindle

Chemical Tools for Imaging, Manipulating, and Tracking Biological Systems: Diverse Methods for Prokaryotic and Eukaryotic Systems, Volume 638, the latest release in the Methods in Enzymology series, continues the legacy of this premier serial with quality chapters authored by leaders in the field. Sample chapters from this new release include In vitro characterization of the colibactin-activating peptidase ClbP enables development of a fluorogenic activity probe, Using FDAA probes to study cell division in Bacillus subtilis, Chemoenzymatic synthesis of UDP-sugars, Chemical tools for selective activity profiling of bacterial penicillin-binding proteins, Chemical Probes Reveal and Extraseptal Mode of Cross-linking in Staphylococcus Aureus, and much more. Provides the authority and expertise of leading contributors from an international board of authors Presents the latest release in the Methods in Enzymology series Includes the latest information on retinoid signaling pathways


Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology

Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology
Author: David Holcman
Publisher: Springer
Total Pages: 377
Release: 2017-10-04
Genre: Mathematics
ISBN: 3319626272

Download Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology Book in PDF, ePub and Kindle

This book focuses on the modeling and mathematical analysis of stochastic dynamical systems along with their simulations. The collected chapters will review fundamental and current topics and approaches to dynamical systems in cellular biology. This text aims to develop improved mathematical and computational methods with which to study biological processes. At the scale of a single cell, stochasticity becomes important due to low copy numbers of biological molecules, such as mRNA and proteins that take part in biochemical reactions driving cellular processes. When trying to describe such biological processes, the traditional deterministic models are often inadequate, precisely because of these low copy numbers. This book presents stochastic models, which are necessary to account for small particle numbers and extrinsic noise sources. The complexity of these models depend upon whether the biochemical reactions are diffusion-limited or reaction-limited. In the former case, one needs to adopt the framework of stochastic reaction-diffusion models, while in the latter, one can describe the processes by adopting the framework of Markov jump processes and stochastic differential equations. Stochastic Processes, Multiscale Modeling, and Numerical Methods for Computational Cellular Biology will appeal to graduate students and researchers in the fields of applied mathematics, biophysics, and cellular biology.


Multiscale Analysis and Visualization of Biophysical Structure and Biochemical Function with Computational Microscopy

Multiscale Analysis and Visualization of Biophysical Structure and Biochemical Function with Computational Microscopy
Author: Sophia P. Hirakis
Publisher:
Total Pages: 183
Release: 2019
Genre:
ISBN:

Download Multiscale Analysis and Visualization of Biophysical Structure and Biochemical Function with Computational Microscopy Book in PDF, ePub and Kindle

The evasive source and cause of a disease is oftentimes smaller than you think. Imagine, though, chasing something that you can't actually see. Fortunately for the modern-day biomedical scientist, computational tools harnessing the power of physics using the language of mathematics are able to see the invisible. Computational microscopy is a tool developed to visualize the energetic behavior of biological systems. With progressive advancements in computer graphics and the development of mathematical theories to explain biological behavior, computational microscopy has become a useful tool used by many kinds scientists over the greater half of the last century to understand the energetic underpinnings of a system's behavior. Unlike most "microscopes," it allows us to visualize extremely small entities like atoms, molecules, proteins, and cells. More importantly, it allows us to spatiotemporally transcend scales to understand the dynamics of our systems. Like a biophysically detailed time-lapse, we are able to see through time, to understand chemical "butterfly effects" that transcend the time and space scale at which they operate. In this thesis, the computational microscope is applied to multiple systems to visualize and analyze the physicochemical mechanisms that underlie biological function. Specifically, the thesis is centered on the structure of proteins and subcellular mechanisms driving cardiac function and dysfunction. In the first chapter, we address the concept of multiscale biological simulations, integrating information from atomistic scales toward cellular models of Protein Kinase A. The second chapter demonstrates the ways that atomistic simulations can be applied to the study of the structural interactions in protein-protein complexes vital to the infectious mechanisms of Group-A Streptococcus. In the third chapter, two scales of biological simulation are used in tandem to understand the structure and the kinetic behavior of Protein Kinase A RIalpha. The final chapter incorporates the kinetic understanding of relevant species in a realistic subcellular geometry to investigate signaling mechanisms that underlie calcium activation in healthy and diseased hearts. Particular attention is paid to the way that structural alterations on the atomistic, molecular, and membranous level alter the behavior of biological systems. Holistically, this thesis is centered on the use of computational tools and the development of realistic models that can reproduce experimental findings and predict the behavior of systems, driving the creation of new hypotheses.


Multiscale Methods

Multiscale Methods
Author: Jacob Fish
Publisher: OUP Oxford
Total Pages: 624
Release: 2009-10-22
Genre: Mathematics
ISBN: 0191579734

Download Multiscale Methods Book in PDF, ePub and Kindle

Small scale features and processes occurring at nanometer and femtosecond scales have a profound impact on what happens at a larger scale and over an extensive period of time. The primary objective of this volume is to reflect the state-of-the-art in multiscale mathematics, modeling, and simulations and to address the following barriers: What is the information that needs to be transferred from one model or scale to another and what physical principles must be satisfied during the transfer of information? What are the optimal ways to achieve such transfer of information? How can variability of physical parameters at multiple scales be quantified and how can it be accounted for to ensure design robustness? The multiscale approaches in space and time presented in this volume are grouped into two main categories: information-passing and concurrent. In the concurrent approaches various scales are simultaneously resolved, whereas in the information-passing methods the fine scale is modeled and its gross response is infused into the continuum scale. The issue of reliability of multiscale modeling and simulation tools which focus on a hierarchy of multiscale models and an a posteriori model of error estimation including uncertainty quantification, is discussed in several chapters. Component software that can be effectively combined to address a wide range of multiscale simulations is also described. Applications range from advanced materials to nanoelectromechanical systems (NEMS), biological systems, and nanoporous catalysts where physical phenomena operates across 12 orders of magnitude in time scales and 10 orders of magnitude in spatial scales. This volume is a valuable reference book for scientists, engineers and graduate students practicing in traditional engineering and science disciplines as well as in emerging fields of nanotechnology, biotechnology, microelectronics and energy.