Multiscale And Multiphysics Robust Design Of A Complex Microstructure With Uncertainties And Driven By Target Performances PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Multiscale And Multiphysics Robust Design Of A Complex Microstructure With Uncertainties And Driven By Target Performances PDF full book. Access full book title Multiscale And Multiphysics Robust Design Of A Complex Microstructure With Uncertainties And Driven By Target Performances.

Multiscale and Multiphysics Robust Design of a Complex Microstructure with Uncertainties, and Driven by Target Performances

Multiscale and Multiphysics Robust Design of a Complex Microstructure with Uncertainties, and Driven by Target Performances
Author: Chenchen Chu
Publisher:
Total Pages: 141
Release: 2022
Genre:
ISBN:

Download Multiscale and Multiphysics Robust Design of a Complex Microstructure with Uncertainties, and Driven by Target Performances Book in PDF, ePub and Kindle

Topology optimization is a systemic design that requires simulation and optimization of a system for a single or multiple physics coupling processes. However, it is short of the engineering sense regarding the absence of uncertainties and limitations on applied monophase material. The foundation of this dissertation is to combine homogenization and stochastic processing into topology optimization to formulate a robust multiscale topology optimization approach. Accordingly, this Ph.D. dissertation concerns (1) the multiscale and multiphysics performance of heterogeneous materials/structures embedded with microstructures material, taking into account the uncertainties, (2) for further optimizing the heterogeneous structure at different scales to satisfy target performance. These microstructures may arise from the processing of biological materials, or from dedicated engineered materials, e.g., aerogels, foams, composites, acoustics metamaterials, etc. We parametrize architecture material; study the performances of the microstructure at the macroscopic scale by homogenization method. Then, the homogenization model can be considered a stochastic model with presented uncertainties exhibited in the unit cell. It can be built from a polynomial chaos development. In addition, these parametrized micro geometry features can be mapped into homogenized properties space, which can be utilized as design variables to control the macrostructure performance. Afterward, we combined the topology optimization, homogenization, and uncertainties qualification to (1) design macro topology and micro material distribution to maximum structure stiffness (2) reduce the structure sensitivity to presented uncertainties (e.g., loading and material properties). This proposed general framework has the advance and compatibility ability in solving optimization problems considering the (1) multiple parametrized architectures cells, (2) complex loading problem, (3) hybrid uncertified, etc., with an affordable computation manner.


Robust Multi-Length Scale Deformation Process Design for the Control of Microstructure-Sensitive Material Properties

Robust Multi-Length Scale Deformation Process Design for the Control of Microstructure-Sensitive Material Properties
Author:
Publisher:
Total Pages: 26
Release: 2007
Genre:
ISBN:

Download Robust Multi-Length Scale Deformation Process Design for the Control of Microstructure-Sensitive Material Properties Book in PDF, ePub and Kindle

The objective of this work was to develop a robust design methodology for optimizing microstructure-sensitive properties in aircraft components manufactured using metal forming processes. The multi-scale forming design simulator developed provides means to select the sequence of deformation processes, design the dies and preforms for each process stage as well as the process conditions such that a product is obtained with desired shape and microstructure. Modeling of uncertainty propagation in such multi-scale models of deformation is extremely complex considering the nonlinear coupled phenomena that need to be accounted for. The work addresses key mathematical and computational issues related to robust multi-scale design of deformation processes. Our research accomplishments include development of new mathematical models based on spectral polynomial chaos, support space, and entropy maximization techniques for modeling sources of uncertainties in material deformation processes. These models, in conjunction with multi-scale homogenization models, allow simulations of the effect of microstructural variability on the reliability of macro-scale systems. We have developed the first stochastic variational multi-scale simulator with an explicit sub-grid model, a robust deformation process simulator using spectral and collocation methods for simulating uncertainties in metal forming processes. Finally, recent developments including an information theoretic framework for modeling microstructural uncertainties is summarized.


From Microstructure Investigations to Multiscale Modeling

From Microstructure Investigations to Multiscale Modeling
Author: Delphine Brancherie
Publisher: John Wiley & Sons
Total Pages: 304
Release: 2018-01-04
Genre: Science
ISBN: 1786302594

Download From Microstructure Investigations to Multiscale Modeling Book in PDF, ePub and Kindle

Mechanical behaviors of materials are highly influenced by their architectures and/or microstructures. Hence, progress in material science involves understanding and modeling the link between the microstructure and the material behavior at different scales. This book gathers contributions from eminent researchers in the field of computational and experimental material modeling. It presents advanced experimental techniques to acquire the microstructure features together with dedicated numerical and analytical tools to take into account the randomness of the micro-structure.


Uncertainty Quantification in Multiscale Materials Modeling

Uncertainty Quantification in Multiscale Materials Modeling
Author: Yan Wang
Publisher: Woodhead Publishing Limited
Total Pages: 604
Release: 2020-03-12
Genre: Materials science
ISBN: 0081029411

Download Uncertainty Quantification in Multiscale Materials Modeling Book in PDF, ePub and Kindle

Uncertainty Quantification in Multiscale Materials Modeling provides a complete overview of uncertainty quantification (UQ) in computational materials science. It provides practical tools and methods along with examples of their application to problems in materials modeling. UQ methods are applied to various multiscale models ranging from the nanoscale to macroscale. This book presents a thorough synthesis of the state-of-the-art in UQ methods for materials modeling, including Bayesian inference, surrogate modeling, random fields, interval analysis, and sensitivity analysis, providing insight into the unique characteristics of models framed at each scale, as well as common issues in modeling across scales.


Multiscale Modelling and Simulation

Multiscale Modelling and Simulation
Author: Sabine Attinger
Publisher: Springer Science & Business Media
Total Pages: 304
Release: 2004-07-12
Genre: Mathematics
ISBN: 9783540211808

Download Multiscale Modelling and Simulation Book in PDF, ePub and Kindle

In August 2003, ETHZ Computational Laboratory (CoLab), together with the Swiss Center for Scientific Computing in Manno and the Università della Svizzera Italiana (USI), organized the Summer School in "Multiscale Modelling and Simulation" in Lugano, Switzerland. This summer school brought together experts in different disciplines to exchange ideas on how to link methodologies on different scales. Relevant examples of practical interest include: structural analysis of materials, flow through porous media, turbulent transport in high Reynolds number flows, large-scale molecular dynamic simulations, ab-initio physics and chemistry, and a multitude of others. Though multiple scale models are not new, the topic has recently taken on a new sense of urgency. A number of hybrid approaches are now created in which ideas coming from distinct disciplines or modelling approaches are unified to produce new and computationally efficient techniques.


Opportunities in Protection Materials Science and Technology for Future Army Applications

Opportunities in Protection Materials Science and Technology for Future Army Applications
Author: National Research Council
Publisher: National Academies Press
Total Pages: 176
Release: 2011-08-27
Genre: Technology & Engineering
ISBN: 0309212855

Download Opportunities in Protection Materials Science and Technology for Future Army Applications Book in PDF, ePub and Kindle

Armor plays a significant role in the protection of warriors. During the course of history, the introduction of new materials and improvements in the materials already used to construct armor has led to better protection and a reduction in the weight of the armor. But even with such advances in materials, the weight of the armor required to manage threats of ever-increasing destructive capability presents a huge challenge. Opportunities in Protection Materials Science and Technology for Future Army Applications explores the current theoretical and experimental understanding of the key issues surrounding protection materials, identifies the major challenges and technical gaps for developing the future generation of lightweight protection materials, and recommends a path forward for their development. It examines multiscale shockwave energy transfer mechanisms and experimental approaches for their characterization over short timescales, as well as multiscale modeling techniques to predict mechanisms for dissipating energy. The report also considers exemplary threats and design philosophy for the three key applications of armor systems: (1) personnel protection, including body armor and helmets, (2) vehicle armor, and (3) transparent armor. Opportunities in Protection Materials Science and Technology for Future Army Applications recommends that the Department of Defense (DoD) establish a defense initiative for protection materials by design (PMD), with associated funding lines for basic and applied research. The PMD initiative should include a combination of computational, experimental, and materials testing, characterization, and processing research conducted by government, industry, and academia.


Handbook of Uncertainty Quantification

Handbook of Uncertainty Quantification
Author: Roger Ghanem
Publisher: Springer
Total Pages: 0
Release: 2016-05-08
Genre: Mathematics
ISBN: 9783319123844

Download Handbook of Uncertainty Quantification Book in PDF, ePub and Kindle

The topic of Uncertainty Quantification (UQ) has witnessed massive developments in response to the promise of achieving risk mitigation through scientific prediction. It has led to the integration of ideas from mathematics, statistics and engineering being used to lend credence to predictive assessments of risk but also to design actions (by engineers, scientists and investors) that are consistent with risk aversion. The objective of this Handbook is to facilitate the dissemination of the forefront of UQ ideas to their audiences. We recognize that these audiences are varied, with interests ranging from theory to application, and from research to development and even execution.


Materials Discovery and Design

Materials Discovery and Design
Author: Turab Lookman
Publisher: Springer
Total Pages: 256
Release: 2018-09-22
Genre: Science
ISBN: 3319994654

Download Materials Discovery and Design Book in PDF, ePub and Kindle

This book addresses the current status, challenges and future directions of data-driven materials discovery and design. It presents the analysis and learning from data as a key theme in many science and cyber related applications. The challenging open questions as well as future directions in the application of data science to materials problems are sketched. Computational and experimental facilities today generate vast amounts of data at an unprecedented rate. The book gives guidance to discover new knowledge that enables materials innovation to address grand challenges in energy, environment and security, the clearer link needed between the data from these facilities and the theory and underlying science. The role of inference and optimization methods in distilling the data and constraining predictions using insights and results from theory is key to achieving the desired goals of real time analysis and feedback. Thus, the importance of this book lies in emphasizing that the full value of knowledge driven discovery using data can only be realized by integrating statistical and information sciences with materials science, which is increasingly dependent on high throughput and large scale computational and experimental data gathering efforts. This is especially the case as we enter a new era of big data in materials science with the planning of future experimental facilities such as the Linac Coherent Light Source at Stanford (LCLS-II), the European X-ray Free Electron Laser (EXFEL) and MaRIE (Matter Radiation in Extremes), the signature concept facility from Los Alamos National Laboratory. These facilities are expected to generate hundreds of terabytes to several petabytes of in situ spatially and temporally resolved data per sample. The questions that then arise include how we can learn from the data to accelerate the processing and analysis of reconstructed microstructure, rapidly map spatially resolved properties from high throughput data, devise diagnostics for pattern detection, and guide experiments towards desired targeted properties. The authors are an interdisciplinary group of leading experts who bring the excitement of the nascent and rapidly emerging field of materials informatics to the reader.


Topology Optimization of Compliant Mechanisms

Topology Optimization of Compliant Mechanisms
Author: Xianmin Zhang
Publisher: Springer
Total Pages: 192
Release: 2018-05-02
Genre: Technology & Engineering
ISBN: 9811304327

Download Topology Optimization of Compliant Mechanisms Book in PDF, ePub and Kindle

This book covers various topics regarding the design of compliant mechanisms using topology optimization that have attracted a great deal of attention in recent decades. After comprehensively describing state-of-the-art methods for designing compliant mechanisms, it provides a new topology optimization method for finding new flexure hinges. It then presents several attempts to obtain distributed compliant mechanisms using the topology optimization method. Further, it discusses a Jacobian-based topology optimization method for compliant parallel mechanisms, and introduces readers to the topology optimization of compliant mechanisms, taking into account geometrical nonlinearity and reliability. Providing a systematic method for topology optimization of flexure hinges, which are essential for designing compliant mechanisms, the book offers a valuable resource for all readers who are interested in designing compliant mechanism-based positioning stages. In addition, the methods for solving the de facto hinges in topology optimized compliant mechanisms will benefit all engineers seeking to design micro-electro-mechanical system (MEMS) structures.