Modeling Of Chemical Mechanical Polishing Process PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Modeling Of Chemical Mechanical Polishing Process PDF full book. Access full book title Modeling Of Chemical Mechanical Polishing Process.

Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication

Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication
Author: Jianfeng Luo
Publisher: Springer Science & Business Media
Total Pages: 327
Release: 2013-03-09
Genre: Science
ISBN: 3662079283

Download Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication Book in PDF, ePub and Kindle

Chemical mechanical planarization, or chemical mechanical polishing as it is simultaneously referred to, has emerged as one of the critical processes in semiconductor manufacturing and in the production of other related products and devices, MEMS for example. Since its introduction some 15+ years ago CMP, as it is commonly called, has moved steadily into new and challenging areas of semiconductor fabrication. Demands on it for consistent, efficient and cost-effective processing have been steady. This has continued in the face of steadily decreasing feature sizes, impressive increases in wafer size and a continuing array of new materials used in devices today. There are a number of excellent existing references and monographs on CMP in circulation and we defer to them for detailed background information. They are cited in the text. Our focus here is on the important area of process mod els which have not kept pace with the tremendous expansion of applications of CMP. Preston's equation is a valuable start but represents none of the subtleties of the process. Specifically, we refer to the development of models with sufficient detail to allow the evaluation and tradeoff of process inputs and parameters to assess impact on quality or quantity of production. We call that an "integrated model" and, more specifically, we include the important role of the mechanical elements of the process.


Modeling of Chemical Mechanical Polishing at Multiple Scales

Modeling of Chemical Mechanical Polishing at Multiple Scales
Author: Guanghui Fu
Publisher:
Total Pages: 258
Release: 2002
Genre:
ISBN:

Download Modeling of Chemical Mechanical Polishing at Multiple Scales Book in PDF, ePub and Kindle

Chemical Mechanical Polishing (CMP) has grown rapidly during the past decade as part of mainstream processing method in submicron integrated circuit manufacturing because of its global or near-global planarization ability. However, CMP process is influenced by many factors and is poorly understood. It makes process control and optimization very difficult. This study focuses on the modeling and simulation to facilitate better understanding and better control of the CMP process. The thesis outlines the modeling of CMP process in three scales: particle scale for material removal mechanism, wafer scale for within wafer nonuniformity issues and feature scale for dishing and erosion in metal CMP. At the particle scale, material removal mechanism is assumed to be due to local plastic deformation of wafer surface material. A mechanistic material removal model is derived that delineates the influence of abrasive (shape, size and concentration), pad (rigidity) and process parameters (pressure and relative velocity) on the material removal rate (MRR). Wafer scale model is based on the solution of indentation of elastic half space by a rigid frictionless polynomial punch. The load-displacement relationship is also derived and the conditions for unbonded or bonded contact are obtained from the boundary condition at punch edge. The corresponding viscoelastic solution is obtained through Laplace transform and elastic-viscoelastic analogy. The elastic solution is used to explain the edge effect. Viscoelastic solution is used to explain MRR decay for unconditioned pad. The relationships among wafer-pad interface pressure, wafer shape and wafer loading condition are also investigated. Feature scale model is based on Preston's relationship for material removal and constant downforce. It shows dishing is governed by polishing conditions (overpolishing, pressure, velocity), slurry (selectivity), pad characteristics (pad stiffness and bending ability), as well as wafer surface feature topography (pattern density, linewidth and pitch). This model is also valid for step height reduction when the same surface material is polished. Due to process complexity and coupling of various parameters, more fundamental research needs to be carried out and carefully designed experiments need to be done to verify the models. Recommendations for future research work is presented at the end.


Advances in Chemical Mechanical Planarization (CMP)

Advances in Chemical Mechanical Planarization (CMP)
Author: Babu Suryadevara
Publisher: Woodhead Publishing
Total Pages: 650
Release: 2021-09-10
Genre: Technology & Engineering
ISBN: 0128218193

Download Advances in Chemical Mechanical Planarization (CMP) Book in PDF, ePub and Kindle

Advances in Chemical Mechanical Planarization (CMP), Second Edition provides the latest information on a mainstream process that is critical for high-volume, high-yield semiconductor manufacturing, and even more so as device dimensions continue to shrink. The second edition includes the recent advances of CMP and its emerging materials, methods, and applications, including coverage of post-CMP cleaning challenges and tribology of CMP. This important book offers a systematic review of fundamentals and advances in the area. Part one covers CMP of dielectric and metal films, with chapters focusing on the use of current and emerging techniques and processes and on CMP of various materials, including ultra low-k materials and high-mobility channel materials, and ending with a chapter reviewing the environmental impacts of CMP processes. New content addressed includes CMP challenges with tungsten, cobalt, and ruthenium as interconnect and barrier films, consumables for ultralow topography and CMP for memory devices. Part two addresses consumables and process control for improved CMP and includes chapters on CMP pads, diamond disc pad conditioning, the use of FTIR spectroscopy for characterization of surface processes and approaches for defection characterization, mitigation, and reduction. Advances in Chemical Mechanical Planarization (CMP), Second Edition is an invaluable resource and key reference for materials scientists and engineers in academia and R&D. Reviews the most relevant techniques and processes for CMP of dielectric and metal films Includes chapters devoted to CMP for current and emerging materials Addresses consumables and process control for improved CMP, including post-CMP


Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication

Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication
Author: Jianfeng Luo
Publisher: Springer
Total Pages: 311
Release: 2014-03-12
Genre: Science
ISBN: 9783662079294

Download Integrated Modeling of Chemical Mechanical Planarization for Sub-Micron IC Fabrication Book in PDF, ePub and Kindle

Chemical mechanical planarization, or chemical mechanical polishing as it is simultaneously referred to, has emerged as one of the critical processes in semiconductor manufacturing and in the production of other related products and devices, MEMS for example. Since its introduction some 15+ years ago CMP, as it is commonly called, has moved steadily into new and challenging areas of semiconductor fabrication. Demands on it for consistent, efficient and cost-effective processing have been steady. This has continued in the face of steadily decreasing feature sizes, impressive increases in wafer size and a continuing array of new materials used in devices today. There are a number of excellent existing references and monographs on CMP in circulation and we defer to them for detailed background information. They are cited in the text. Our focus here is on the important area of process mod els which have not kept pace with the tremendous expansion of applications of CMP. Preston's equation is a valuable start but represents none of the subtleties of the process. Specifically, we refer to the development of models with sufficient detail to allow the evaluation and tradeoff of process inputs and parameters to assess impact on quality or quantity of production. We call that an "integrated model" and, more specifically, we include the important role of the mechanical elements of the process.


Mechanics, Mechanisms, and Modeling of the Chemical Mechanical Polishing Process

Mechanics, Mechanisms, and Modeling of the Chemical Mechanical Polishing Process
Author: Jiun-Yu Lai
Publisher:
Total Pages: 616
Release: 2001
Genre:
ISBN:

Download Mechanics, Mechanisms, and Modeling of the Chemical Mechanical Polishing Process Book in PDF, ePub and Kindle

(Cont.) Additionally, contact mechanics models, which relate the pressure distribution to the pattern geometry and pad elastic properties, explain the die-scale variation of material removal rate (MRR) on pattern geometry. The pad displacement into low features of submicron lines is less than 0.1 nm. Hence the applied load is only carried by the high features, and the pressure on high features increases with the area fraction of interconnects. Experiments study the effects of pattern geometry on the rates of pattern planarization, oxide overpolishing and Cu dishing. It was observed that Cu dishing of submicron features is less than 20 nm and contributes less to surface non-uniformity than does oxide overpolishing. Finally, a novel in situ detection technique, based on the change of the reflectance of the patterned surface at different polishing stages, is developed to detect the process endpoint and minimize overpolishing. Models that employ light scattering theory and statistical treatment correlate the sampled reflectance with the surface topography and Cu area fraction for detecting the process regime and endpoint. The experimental results agree well with the endpoint detection schemes predicted by the models.