Mobile Elements And Plant Genome Evolution Comparative Analyses And Computational Tools Volume Ii PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Mobile Elements And Plant Genome Evolution Comparative Analyses And Computational Tools Volume Ii PDF full book. Access full book title Mobile Elements And Plant Genome Evolution Comparative Analyses And Computational Tools Volume Ii.

Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools, Volume II

Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools, Volume II
Author: Ruslan Kalendar
Publisher: Frontiers Media SA
Total Pages: 161
Release: 2023-11-28
Genre: Science
ISBN: 2832540163

Download Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools, Volume II Book in PDF, ePub and Kindle

This Research Topic is part of the Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools series: Mobile Elements and Plant Genome Evolution, Comparative Analyses and Computational Tools Transposable elements are very common mobile genetic elements that are composed of several classes and make up the majority of eukaryotic genomes. The movement and accumulation of mobile genetic elements have been a major force in the formation of the genes and genomes of nearly all organisms. As dispersed and ubiquitous mobile elements, their life cycle of replicative transposition leads to genome rearrangements affecting cellular function. Transposable elements are important drivers of species diversity, and they exhibit great variety in structure, size, and mechanisms of transposition, making them important putative actors in genome evolution.


Plant Transposable Elements

Plant Transposable Elements
Author: Deepu Pandita
Publisher: CRC Press
Total Pages: 376
Release: 2023-06-30
Genre: Science
ISBN: 1000638758

Download Plant Transposable Elements Book in PDF, ePub and Kindle

This new volume provides an up-to-date understanding of the numerous classes of plant transposable elements, the mobile units of DNA that comprise large portions of plant genomes, which are an important contributor for gene and genome evolution. Transposable elements (TEs) are major components of large plant genomes and main drivers of genome evolution, known to produce a wide variety of changes in plant gene expression and function. Providing a systematic interpretation of protocols designed to characterize TEs and their biotechnological roles, the volume explores TEs in plant development, their architecture, their epigenetic regulation, their use in DNA repair, their evolution and speciation, while also highlighting their importance in the approaching epoch of climate change. The volume begins with introduction of transposable elements, covering their classification and transposition. It delves into protocols designed to characterize TEs and their biotechnological applications. The book includes computational approaches for prediction and analysis, retro-transposon capture sequencing, and more. The section on transposon biology focuses on its role in plant development and as natural genetic engineers of genome mutation, evolution, and speciation. The book looks further into transposon applications in genome editing, exploring tagging and mutagenesis, genome engineering, and more.


Genome-wide Transposon Analyses

Genome-wide Transposon Analyses
Author: Elizabeth Marie Hénaff
Publisher:
Total Pages: 167
Release: 2013
Genre:
ISBN:

Download Genome-wide Transposon Analyses Book in PDF, ePub and Kindle

The diversity of life forms around us is astounding: a walk in the woods, or even down the street, shows us organisms of different morphologies: two legs, four legs, wings; different capacity of interaction with our environment: plants photosynthesizing while bacteria break down our garbage. How can life take on so many forms? While there is some increase of genes when comparing the most simple eukaryotes to the most complex ones it is clear that organism complexity is not the result of the number of genes. Therefore is has been postulated that the complexity of an organism arises from the complexity of its gene regulation, rather than the number of genes. This regulation must come then from the non-gene part of the genome. We now know that genes constitute but a small portion of genomes, (about 5% of the human genome). The advent of whole-genome sequencing has enabled us to get a more complete picture of what is in a genome, and with that has come the surprise that a significant part of all genomes characterized is constituted of transposable elements (TEs). Transposable elements are mobile genetic sequences, meaning that they have the capacity to change their position within the genome of a single cell. The goal of my dissertation has been to investigate the role of TEs in plants and their impact on gene and genome evolution. For this I have taken two approaches. The first is a study in the newly sequenced genome of Cucumis melo, an important crop plant in Spain. In the context of this project I have characterized the transposon landscape in the genome, and identified TE related polymorphisms between seven different varieties. This project has of interest the fact that this is an important plant for agriculture and domestication is a particularly relevant evolutionary context in which to study the impact of transposons, as the lines analyzed come from different geographic and selection backgrounds. In the context of this project I have developed a pipeline for genome annotation, and a software for detection of polymorphisms using next-generation paired-end sequencing data. This yielded insight into the dynamics of transposon evolution in this genome, and the selective forces that have shaped the transposon landscape. To our knowledge this is the first analysis that uses polymorphic TEs to investigate differential chromosomal distribution of recent and old transposons, and thus revealing at an intra-species scale the timeline of selection. The results obtained are promising for studying the contribution of mobile elements to the evolution of two genetically similar yet phenotypically different cultivated varieties. In order to study the impact of transposition on gene regulation, I investigated MITE families which have amplified a transciption factor binding site (TF BS) in the model plant Arabidopsis thaliana. This project focuses on the potential impact on gene regulation networks of the redistribution of this TFBS, a phenomenon that has been described for various master TF in animals but not yet to my knowledge in plants. This study combines in silico analysis with molecular data such as microarrays and ChIP, and is a striking example of one of the many manners in which TEs can impact gene regulation. The work in this dissertation highlights the contradictory nature of transposable elements: on one hand, they are invasive, and on the other, are the source of essential innovations. Here we provide insight as to the functions they play in plant genome evolution.


Plant Genome Diversity Volume 2

Plant Genome Diversity Volume 2
Author: Johann Greilhuber
Publisher: Springer Science & Business Media
Total Pages: 360
Release: 2012-11-13
Genre: Science
ISBN: 3709111609

Download Plant Genome Diversity Volume 2 Book in PDF, ePub and Kindle

This second of two volumes on Plant Genome Diversity provides, in 20 chapters, insights into the structural evolution of plant genomes with all its variations. Starting with an outline of plant phylogeny and its reconstruction, the second part of the volume describes the architecture and dynamics of the plant cell nucleus, the third examines the evolution and diversity of the karyotype in various lineages, including angiosperms, gymnosperms and monilophytes. The fourth part presents the mechanisms of polyploidization and its biological consequences and significance for land plant evolution. The fifth part deals with genome size evolution and its biological significance. Together with Volume I, this comprehensive book on the plant genome is intended for students and professionals in all fields of plant science, offering as it does a convenient entry into a burgeoning literature in a fast-moving field.


Plant Comparative Genomics

Plant Comparative Genomics
Author: Alejandro Pereira-Santana
Publisher: Springer Nature
Total Pages: 293
Release: 2022-07-11
Genre: Science
ISBN: 1071624296

Download Plant Comparative Genomics Book in PDF, ePub and Kindle

This detailed book presents recent methodologies for the task of inspecting the genomic world of plants, extracting valuable information, and presenting it in a readable way. With a focus on bioinformatics tools, the volume explores phylogenetics and evolution, Omics analysis, as well as experimental procedures for trait characterization. Written for the highly successful Methods in Molecular Biology series, chapters include the kind of vital expert implementation advice that will lead to successful results. Authoritative and practical, Plant Comparative Genomics serves as an ideal resource for researchers looking to implement comparative tools in order to explore their genomic data for their daily scientific work.


Plant Transposable Elements

Plant Transposable Elements
Author: Marie-Angèle Grandbastien
Publisher: Springer Science & Business Media
Total Pages: 338
Release: 2013-01-08
Genre: Science
ISBN: 3642318428

Download Plant Transposable Elements Book in PDF, ePub and Kindle

Transposable elements are short lengths of DNA with the capacity to move between different points within a genome. This process can affect the function of genes at or near the insertion site. The present book gives an overview of the impact of transposable elements on plant genomes and explains how to recognize and study transposable elements, e.g. by using state-of-the-art strategies like “new generation sequencing.” Moreover, the impact of transposable elements on plant genome structure and function is reviewed in detail, and also illustrated in examples and case studies. The book is intended both for readers familiar with the field and for newcomers. With large-scale sequencing becoming increasingly available, more and more people will come across transposable element sequences in their data, and this volume will hopefully help to convince them that they are not just “junk DNA.”


Plant Transposons and Genome Dynamics in Evolution

Plant Transposons and Genome Dynamics in Evolution
Author: Nina V. Fedoroff
Publisher: John Wiley & Sons
Total Pages: 240
Release: 2013-01-16
Genre: Science
ISBN: 1118500105

Download Plant Transposons and Genome Dynamics in Evolution Book in PDF, ePub and Kindle

The transposable genetic elements, or transposons, as they are now known, have had a tumultuous history. Discovered in the mid-20th century by Barbara McClintock, they were initially received with puzzlement. When their genomic abundance began to be apparent, they were categorized as "junk DNA" and acquired the label of parasites. Expanding understanding of gene and genome organization has revealed the profound extent of their impact on both. Plant Transposons and Genome Dynamics in Evolution captures and distills the voluminous research literature on plant transposable elements and seeks to assemble the big picture of how transposons shape gene structure and regulation, as well as how they sculpt genomes in evolution. Individual chapters provide concise overviews of the many flavors of plant transposons and of their roles in gene creation, gene regulation, development, genome evolution, and organismal speciation, as well as of their epigenetic regulation. This volume is essential reading for anyone working in plant genetics, epigenetics, or evolutionary biology.


Mobile DNA III

Mobile DNA III
Author: Michael Chandler
Publisher: John Wiley & Sons
Total Pages: 1321
Release: 2020-07-24
Genre: Science
ISBN: 1555819214

Download Mobile DNA III Book in PDF, ePub and Kindle

An exploration of the raw power of genetic material to refashion itself to any purpose... Virtually all organisms contain multiple mobile DNAs that can move from place to place, and in some organisms, mobile DNA elements make up a significant portion of the genome. Mobile DNA III provides a comprehensive review of recent research, including findings suggesting the important role that mobile elements play in genome evolution and stability. Editor-in-Chief Nancy L. Craig assembled a team of multidisciplinary experts to develop this cutting-edge resource that covers the specific molecular mechanisms involved in recombination, including a detailed structural analysis of the enzymes responsible presents a detailed account of the many different recombination systems that can rearrange genomes examines the tremendous impact of mobile DNA in virtually all organisms Mobile DNA III is valuable as an in-depth supplemental reading for upper level life sciences students and as a reference for investigators exploring new biological systems. Biomedical researchers will find documentation of recent advances in understanding immune-antigen conflict between host and pathogen. It introduces biotechnicians to amazing tools for in vivo control of designer DNAs. It allows specialists to pick and choose advanced reviews of specific elements and to be drawn in by unexpected parallels and contrasts among the elements in diverse organisms. Mobile DNA III provides the most lucid reviews of these complex topics available anywhere.


Mobile DNA

Mobile DNA
Author: Douglas E. Berg
Publisher: Amer Society for Microbiology
Total Pages: 972
Release: 1989-01
Genre: Medical
ISBN: 9781555810054

Download Mobile DNA Book in PDF, ePub and Kindle

Documents the remarkable mobility of DNA in procaryotic and eucaryotic genomes: the ability of various DNA segments to move to new sites, to invert, and to undergo deletion or amplification, generally without the extensive DNA sequence homology needed for classical recombination. Seventy contributors explore the mechanisms of these rearrangements, how they are regulated, their biological consequences, and their potential use as research tools. For students and researchers of molecular genetics. Annotation copyrighted by Book News, Inc., Portland, OR