Materials In Energy Conversion Harvesting And Storage PDF Download

Are you looking for read ebook online? Search for your book and save it on your Kindle device, PC, phones or tablets. Download Materials In Energy Conversion Harvesting And Storage PDF full book. Access full book title Materials In Energy Conversion Harvesting And Storage.

Materials in Energy Conversion, Harvesting, and Storage

Materials in Energy Conversion, Harvesting, and Storage
Author: Kathy Lu
Publisher: John Wiley & Sons
Total Pages: 625
Release: 2014-08-07
Genre: Technology & Engineering
ISBN: 1118892380

Download Materials in Energy Conversion, Harvesting, and Storage Book in PDF, ePub and Kindle

First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.


Materials in Energy Conversion, Harvesting, and Storage

Materials in Energy Conversion, Harvesting, and Storage
Author: Kathy Lu
Publisher: John Wiley & Sons
Total Pages: 485
Release: 2014-09-22
Genre: Technology & Engineering
ISBN: 111888910X

Download Materials in Energy Conversion, Harvesting, and Storage Book in PDF, ePub and Kindle

First authored book to address materials' role in the quest for the next generation of energy materials Energy balance, efficiency, sustainability, and so on, are some of many facets of energy challenges covered in current research. However, there has not been a monograph that directly covers a spectrum of materials issues in the context of energy conversion, harvesting and storage. Addressing one of the most pressing problems of our time, Materials in Energy Conversion, Harvesting, and Storage illuminates the roles and performance requirements of materials in energy and demonstrates why energy materials are as critical and far-reaching as energy itself. Each chapter starts out by explaining the role of a specific energy process in today’s energy landscape, followed by explanation of the fundamental energy conversion, harvesting, and storage processes. Well-researched and coherently written, Materials in Energy Conversion, Harvesting, and Storage covers: The availability, accessibility, and affordability of different energy sources Energy production processes involving material uses and performance requirements in fossil, nuclear, solar, bio, wind, hydrothermal, geothermal, and ocean energy systems Issues of materials science in energy conversion systems Issues of energy harvesting and storage (including hydrogen storage) and materials needs Throughout the book, illustrations and images clarify and simplify core concepts, techniques, and processes. References at the end of each chapter serve as a gateway to the primary literature in the field. All chapters are self-contained units, enabling instructors to easily adapt this book for coursework. This book is suitable for students and professors in science and engineering who look to obtain comprehensive understanding of different energy processes and materials issues. In setting forth the latest advances and new frontiers of research, experienced materials researchers and engineers can utilize it as a comprehensive energy material reference book.


Advanced Ceramics for Energy Conversion and Storage

Advanced Ceramics for Energy Conversion and Storage
Author: Olivier Guillon
Publisher: Elsevier
Total Pages: 750
Release: 2019-11-20
Genre: Technology & Engineering
ISBN: 0081027842

Download Advanced Ceramics for Energy Conversion and Storage Book in PDF, ePub and Kindle

In order to enable an affordable, sustainable, fossil-free future energy supply, research activities on relevant materials and related technologies have been intensified in recent years, Advanced Ceramics for Energy Conversion and Storage describes the current state-of-the-art concerning materials, properties, processes, and specific applications. Academic and industrial researchers, materials scientists, and engineers will be able to get a broad overview of the use of ceramics in energy applications, while at the same time become acquainted with the most recent developments in the field. With chapters written by recognized experts working in their respective fields the book is a valuable reference source covering the following application areas: ceramic materials and coatings for gas turbines; heat storage and exchange materials for solar thermal energy; ceramics for nuclear energy; ceramics for energy harvesting (thermoelectrics, piezoelectrics, and sunlight conversion); ceramic gas separation membranes; solid oxide fuel cells and electrolysers; and electrochemical storage in battery cells. Advanced Ceramics for Energy Conversion and Storage offers a sound base for understanding the complex requirements related to the technological fields and the ceramic materials that make them possible. The book is also suitable for people with a solid base in materials science and engineering that want to specialize in ceramics. Presents an extensive overview of ceramic materials involved in energy conversion and storage Updates on the tremendous progress that has been achieved in recent years Showcases authors at the forefront of their fields, including results from the huge amount of published data Provides a list of requirements for the materials used for each energy technology Includes an evaluation and comparison of materials available, including their structure, properties and performance


Solar Energy Harvesting, Conversion, and Storage

Solar Energy Harvesting, Conversion, and Storage
Author: Mohammad Khalid
Publisher: Elsevier
Total Pages: 411
Release: 2023-04-29
Genre: Technology & Engineering
ISBN: 0323908225

Download Solar Energy Harvesting, Conversion, and Storage Book in PDF, ePub and Kindle

Solar Energy Harvesting, Conversion, and Storage: Materials, Technologies, and Applications focuses on the current state of solar energy and the recent advancements in nanomaterials for different technologies, from harnessing energy to storage. The book covers different aspects of advanced nanomaterials for solar energy, rapid developments in solar thermal and hot water systems, and PV and CSP technologies. In addition, sections cover storing harnessed solar/heat energy using different available energy storage technologies, including phase change materials (PCMs), batteries, and supercapacitors. Various applications such as agriculture and aquaculture, desalination, domestic appliances, and transport are also explored. Provides an overview of solar energy harvesting technologies, energy storage technologies, and the role of advanced nanomaterials in solar energy Explores applications of technology in the fields of agriculture, aquaculture, desalination and transport Includes discussion of current policies, strategies and socioeconomic analysis and challenges


Sustainable Materials and Green Processing for Energy Conversion

Sustainable Materials and Green Processing for Energy Conversion
Author: Kuan Yew Cheong
Publisher: Elsevier
Total Pages: 504
Release: 2021-10-05
Genre: Technology & Engineering
ISBN: 0128228385

Download Sustainable Materials and Green Processing for Energy Conversion Book in PDF, ePub and Kindle

Sustainable Materials and Green Processing for Energy Conversion provides a concise reference on green processing and synthesis of materials required for the next generation of devices used in renewable energy conversion and storage. The book covers the processing of bio-organic materials, environmentally-friendly organic and inorganic sources of materials, synthetic green chemistry, bioresorbable and transient properties of functional materials, and the concept of sustainable material design. The book features chapters by worldwide experts and is an important reference for students, researchers, and engineers interested in gaining extensive knowledge concerning green processing of sustainable, green functional materials for next generation energy devices. Additionally, functional materials used in energy devices must also be able to degrade and decompose with minimum energy after being disposed of at their end-of-life. Environmental pollution is one of the global crises that endangers the life cycles of living things. There are multiple root causes of this pollution, including industrialization that demands a huge supply of raw materials for the production of products related to meeting the demands of the Internet-of-Things. As a result, improvement of material and product life cycles by incorporation of green, sustainable principles is essential to address this challenging issue. Offers a resourceful reference for readers interested in green processing of environmentally-friendly and sustainable materials for energy conversion and storage devices Focuses on designing of materials through green-processing concepts Highlights challenges and opportunities in green processing of renewable materials for energy devices


Thin Films for Energy Harvesting, Conversion, and Storage

Thin Films for Energy Harvesting, Conversion, and Storage
Author: Zhong Chen
Publisher: MDPI
Total Pages: 174
Release: 2019-11-07
Genre: Science
ISBN: 3039217240

Download Thin Films for Energy Harvesting, Conversion, and Storage Book in PDF, ePub and Kindle

Efficient clean energy harvesting, conversion, and storage technologies are of immense importance for the sustainable development of human society. To this end, scientists have made significant advances in recent years regarding new materials and devices for improving the energy conversion efficiency for photovoltaics, thermoelectric generation, photoelectrochemical/electrolytic hydrogen generation, and rechargeable metal ion batteries. The aim of this Special Issue is to provide a platform for research scientists and engineers in these areas to demonstrate and exchange their latest research findings. This thematic topic undoubtedly represents an extremely important technological direction, covering materials processing, characterization, simulation, and performance evaluation of thin films used in energy harvesting, conversion, and storage.


Electrode Materials for Energy Storage and Conversion

Electrode Materials for Energy Storage and Conversion
Author: Mesfin A. Kebede
Publisher: CRC Press
Total Pages: 518
Release: 2021-11-17
Genre: Science
ISBN: 1000457869

Download Electrode Materials for Energy Storage and Conversion Book in PDF, ePub and Kindle

This book provides a comprehensive overview of the latest developments and materials used in electrochemical energy storage and conversion devices, including lithium-ion batteries, sodium-ion batteries, zinc-ion batteries, supercapacitors and conversion materials for solar and fuel cells. Chapters introduce the technologies behind each material, in addition to the fundamental principles of the devices, and their wider impact and contribution to the field. This book will be an ideal reference for researchers and individuals working in industries based on energy storage and conversion technologies across physics, chemistry and engineering. FEATURES Edited by established authorities, with chapter contributions from subject-area specialists Provides a comprehensive review of the field Up to date with the latest developments and research Editors Dr. Mesfin A. Kebede obtained his PhD in Metallurgical Engineering from Inha University, South Korea. He is now a principal research scientist at Energy Centre of Council for Scientific and Industrial Research (CSIR), South Africa. He was previously an assistant professor in the Department of Applied Physics and Materials Science at Hawassa University, Ethiopia. His extensive research experience covers the use of electrode materials for energy storage and energy conversion. Prof. Fabian I. Ezema is a professor at the University of Nigeria, Nsukka. He obtained his PhD in Physics and Astronomy from University of Nigeria, Nsukka. His research focuses on several areas of materials science with an emphasis on energy applications, specifically electrode materials for energy conversion and storage.


Nanomaterials For Energy Conversion And Storage

Nanomaterials For Energy Conversion And Storage
Author: Dunwei Wang
Publisher: World Scientific
Total Pages: 836
Release: 2017-11-10
Genre: Science
ISBN: 1786343649

Download Nanomaterials For Energy Conversion And Storage Book in PDF, ePub and Kindle

The use of nanomaterials in energy conversion and storage represents an opportunity to improve the performance, density and ease of transportation in renewable resources. This book looks at the most recent research on the topic, with particular focus on artificial photosynthesis and lithium-ion batteries as the most promising technologies to date. Research on the broad subject of energy conversion and storage calls for expertise from a wide range of backgrounds, from the most fundamental perspectives of the key catalytic processes at the molecular level to device scale engineering and optimization. Although the nature of the processes dictates that electrochemistry is a primary characterization tool, due attention is given to advanced techniques such as synchrotron studies in operando. These studies look at the gap between the performance of current technology and what is needed for the future, for example how to improve on the lithium-ion battery and to go beyond its capabilities.Suitable for students and practitioners in the chemical, electrochemical, and environmental sciences, Nanomaterials for Energy Conversion and Storage provides the information needed to find scalable, economically viable and safe solutions for sustainable energy.


Materials for Sustainable Energy Applications

Materials for Sustainable Energy Applications
Author: David Munoz-Rojas
Publisher: CRC Press
Total Pages: 826
Release: 2017-03-27
Genre: Science
ISBN: 9814411825

Download Materials for Sustainable Energy Applications Book in PDF, ePub and Kindle

The impending energy crisis brought on by the running out of finite and non-homogenously distributed fossil fuel reserves and the worldwide increase in energy demand has prompted vast research in the development of sustainable energy technologies in the last few decades. However, the efficiency of most of these new technologies is relatively small and therefore it needs to be increased to eventually replace conventional technologies based on fossil fuels. The required efficiency increase primarily relies on the ability to improve the performance of the functional materials which are at the heart of these technologies. The purpose of this book is to give a unified and comprehensive presentation of the fundamentals and the use and design of novel materials for efficient sustainable energy applications, such as conversion, storage, transmission, and consumption. The book presents general coverage of the use and design of advanced materials for sustainable energy applications. Thus, the book addresses all the relevant aspects, such as materials for energy conversion, storage, transmission, and consumption.


Ferroelectric Materials for Energy Harvesting and Storage

Ferroelectric Materials for Energy Harvesting and Storage
Author: Deepam Maurya
Publisher: Woodhead Publishing
Total Pages: 372
Release: 2020-10-14
Genre: Technology & Engineering
ISBN: 0081028792

Download Ferroelectric Materials for Energy Harvesting and Storage Book in PDF, ePub and Kindle

The need to more efficiently harvest energy for electronics has spurred investigation into materials that can harvest energy from locally abundant sources. Ferroelectric Materials for Energy Harvesting and Storage is the first book to bring together fundamental mechanisms for harvesting various abundant energy sources using ferroelectric and piezoelectric materials. The authors discuss strategies of designing materials for efficiently harvesting energy sources like solar, wind, wave, temperature fluctuations, mechanical vibrations, biomechanical motion, and stray magnetic fields. In addition, concepts of the high density energy storage using ferroelectric materials is explored. Ferroelectric Materials for Energy Harvesting and Storage is appropriate for those working in materials science and engineering, physics, chemistry and electrical engineering disciplines. Reviews wide range of energy harvesting including solar, wind, biomechanical and more Discusses ferroelectric materials and their application to high energy density capacitors Includes review of fundamental mechanisms of energy harvesting and energy solutions, their design and current applications, and future trends and challenges